
TERASOLUNA Batch Framework for
Java (5.x) Development Guideline

NTT DATA Corporation.

Version 5.1.1.RELEASE, 2018-3-16

Table of Contents
1. Introduction. 1

1.1. Terms of Use. 1

1.1.1. Reference . 1

1.1.1.1. Macchinetta-Terms of use . 2

1.2. Introduction . 3

1.2.1. Objective of guideline . 3

1.2.2. Target readers . 3

1.2.3. Structure of guideline . 3

1.2.4. How to read guideline . 4

1.2.4.1. Notations in guideline . 4

1.2.5. Tested environments of guideline . 5

1.3. Change Log . 6

2. TERASOLUNA Batch Framework for Java (5.x) concept . 11

2.1. Batch Processing in General . 11

2.1.1. Introduction to Batch Processing . 11

2.1.2. Requirements for batch processing . 12

2.1.3. Rules and precautions to be considered in batch processing . 14

2.2. TERASOLUNA Batch Framework for Java (5.x) stack . 15

2.2.1. Overview. 15

2.2.2. TERASOLUNA Batch Framework for Java (5.x) stack. 15

2.2.2.1. OSS version to be used . 15

2.2.3. Structural elements of TERASOLUNA Batch Framework for Java (5.x). 17

A function wherein TERASOLUNA Batch Framework for Java (5.x) provides implementation 19

2.3. Spring Batch Architecture . 21

2.3.1. Overview. 21

2.3.1.1. What is Spring Batch . 21

2.3.1.2. Hello, Spring Batch！ . 21

2.3.1.3. Basic structure of Spring Batch . 22

2.3.2. Architecture . 23

2.3.2.1. Overall process flow . 23

2.3.2.2. Running a Job. 25

2.3.2.3. Execution of business logic . 27

2.3.2.3.1. Chunk model. 28

2.3.2.3.2. Tasket model . 32

2.3.2.4. Metadata schema of JobRepository. 33

2.3.2.4.1. Version . 34

2.3.2.4.2. ID (Sequence) definition . 34

2.3.2.4.3. Table definition . 34

2.3.2.4.4. DDL script . 38

2.3.2.5. Typical performance tuning points . 38

2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x) . 39

2.4.1. Overview. 39

2.4.2. Structural elements of job . 39

2.4.2.1. Job . 40

2.4.2.2. Step . 40

2.4.3. How to implement Step . 41

2.4.3.1. Chunk model . 41

2.4.3.2. Tasklet model . 41

2.4.3.3. Functional difference between chunk model and Tasklet model 42

2.4.4. Running a job method . 42

2.4.4.1. Synchronous execution method . 43

2.4.4.2. Asynchronous execution method . 43

2.4.4.2.1. Asynchronous execution method (DB polling). 43

2.4.4.2.2. Asynchronous execution method (Web container). 44

2.4.5. Points to be considered while using. 45

3. Methodology of application development . 46

3.1. Development of batch application . 46

3.1.1. What is blank project . 46

3.1.2. Creation of project . 46

3.1.3. Project structure . 52

3.1.4. Flow of development . 54

3.1.4.1. Import to IDE . 54

3.1.4.2. Setting of entire application . 55

3.1.4.2.1. Project information of pom.xml. 55

3.1.4.2.2. Database related settings. 55

3.1.5. Creation of job . 58

3.1.6. Build and execution of project. 59

3.1.6.1. Build of application. 59

3.1.6.2. Switching of configuration file according to the environment . 59

3.1.6.2.1. Execution of application . 62

3.2. Creation of chunk model job . 64

3.2.1. Overview. 64

3.2.1.1. Components . 64

3.2.2. How to use . 64

3.2.2.1. Job configuration. 65

3.2.2.2. Implementation of components . 68

3.2.2.2.1. Implementation of ItemProcessor. 68

3.3. Creation of tasklet model job. 71

3.3.1. Overview. 71

3.3.1.1. Components . 71

3.3.2. HowToUse . 71

3.3.2.1. Job configuration. 71

3.3.2.2. Implementation of tasklet . 73

3.3.2.3. Implementation of simple tasklet . 73

3.3.2.4. Implementation of tasklet using the components of chunk model. 74

3.4. Distinguish between chunk model and tasklet model. 83

4. Running a job . 85

4.1. Synchronous job . 85

4.1.1. Overview. 85

4.1.2. How to use . 85

4.1.2.1. How to run . 86

4.1.2.2. Options. 88

4.2. Job parameters . 89

4.2.1. Overview. 89

4.2.2. How to use . 89

4.2.2.1. Regarding parameter conversion class . 89

4.2.2.2. Assign from command-line arguments . 90

4.2.2.3. Redirect from file to standard input. 92

4.2.2.4. Set the default value of parameter . 93

4.2.2.5. Validation of parameters. 94

4.2.2.5.1. Simple validation. 95

4.2.2.5.2. Complex validation . 97

4.2.3. How to extend . 99

4.2.3.1. Using parameters and properties together . 99

4.3. Asynchronous execution (DB polling) . 103

4.3.1. Overview. 103

4.3.1.1. What is asynchronous execution by using DB polling? . 103

4.3.1.1.1. Functions offered by TERASOLUNA Batch 5.x . 103

4.3.1.1.2. Usage scene. 104

4.3.2. Architecture . 105

4.3.2.1. Processing sequence of DB polling . 105

4.3.2.2. About the table to be polled . 106

4.3.2.2.1. Job-request-table structure . 106

4.3.2.2.2. Job request sequence structure . 108

4.3.2.2.3. Transition pattern of polling status (polling_status). 108

4.3.2.2.4. Job request fetch SQL . 108

4.3.2.3. About job running. 109

4.3.2.4. When abnormality is detected in DB polling process . 109

4.3.2.4.1. Database connection failure. 109

4.3.2.4.2. Abnormal termination of asynchronous batch daemon process 110

4.3.2.5. Stopping DB polling process . 110

4.3.2.6. About application configuration specific to asynchronous execution 110

4.3.2.6.1. ApplicationContext configuration. 110

4.3.2.6.2. Bean definition structure . 111

4.3.3. How to use . 111

4.3.3.1. Various settings . 111

4.3.3.1.1. Settings for polling process . 111

4.3.3.1.2. Job settings . 113

4.3.3.2. From start to end of asynchronous execution . 115

4.3.3.2.1. Start of asynchronous batch daemon. 115

4.3.3.2.2. Job request . 116

4.3.3.2.3. Stopping asynchronous batch daemon . 116

4.3.3.3. Confirm job status. 116

4.3.3.4. Recovery after a job is terminated abnormally. 117

4.3.3.4.1. Re-run. 117

4.3.3.4.2. Restart . 117

4.3.3.4.3. Termination . 117

4.3.3.5. About environment deployment. 118

4.3.3.6. Evacuation of cumulative data . 118

4.3.4. How to extend . 119

4.3.4.1. Customising Job-request-table . 119

4.3.4.1.1. Example of controlling job execution sequence by priority column 119

4.3.4.1.2. Distributed processing by multiple processes using a group ID 122

4.3.4.2. Customization of clock used in timestamp . 125

4.3.4.3. Multiple runnings . 125

4.3.5. Appendix. 126

4.3.5.1. About modularization of job definition. 126

4.4. Asynchronous execution (Web container) . 130

4.4.1. Overview. 130

4.4.2. Architecture . 130

4.4.2.1. About detection of abnormality occurrence at the time of running a job 132

4.4.2.2. Application configuration of asynchronous execution (Web container) 133

4.4.2.2.1. ApplicationContext configuration. 133

4.4.3. How to use . 135

4.4.3.1. Overview of implementation of application by asynchronous execution (Web

container)

 135

4.4.3.2. Various settings . 137

4.4.3.3. Implementation of Web application . 139

4.4.3.3.1. Web application settings . 139

4.4.3.3.2. Implementation of JavaBeans used in Controller . 143

4.4.3.3.3. Implementation of controller. 145

4.4.3.3.4. Integration of Web/batch application module setting . 147

4.4.3.3.5. Build . 148

4.4.3.3.6. Deploy . 149

4.4.3.4. Job start and confirmation of execution results using REST Client 149

4.4.4. How to extend . 151

4.4.4.1. Stopping and restarting jobs . 151

4.4.4.2. Multiple running . 153

4.5. Listener . 154

4.5.1. Overview. 154

4.5.1.1. Types of listener . 154

4.5.1.1.1. JobListener . 154

4.5.1.1.2. StepListener . 155

4.5.2. How to use . 156

4.5.2.1. Implementation of a listener . 156

4.5.2.1.1. When an interface is to be implemented . 157

4.5.2.1.2. When annotations are assigned . 158

4.5.2.2. Listener settings . 161

4.5.2.2.1. Setting multiple listeners. 162

4.5.2.3. How to choose an interface or an annotation . 164

4.5.2.4. Exception occurred in pre-processing with StepExecutionListener. 164

4.5.2.5. Job abort in preprocess (StepExecutionListener#beforeStep()). 165

5. Input/Output of Data . 168

5.1. Transaction control . 168

5.1.1. Overview. 168

5.1.1.1. About the pattern of transaction control in general batch processing 168

5.1.2. Architecture . 170

5.1.2.1. Transaction control in Spring Batch. 170

5.1.2.1.1. Transaction control mechanism in chunk model . 170

5.1.2.1.2. Mechanism of transaction control in tasklet model . 173

5.1.2.1.3. Selection policy for model-specific transaction control. 179

5.1.2.2. Difference in transaction control for each execution method. 179

5.1.2.2.1. About transaction of DB polling. 179

5.1.2.2.2. About the transaction of WebAP server process . 181

5.1.3. How to use . 182

5.1.3.1. For a single data source. 183

5.1.3.1.1. Implement transaction control . 183

5.1.3.1.2. Note for non-transactional data sources . 186

5.1.3.2. For multiple data sources . 187

5.1.3.2.1. Input from multiple data source . 188

5.1.3.2.2. Output to multiple data sources(multiple steps) . 192

5.1.3.2.3. Output to multiple data sources(single step) . 192

5.1.3.3. Notes on intermediate method commit. 195

5.2. Database Access . 196

5.2.1. Overview. 196

5.2.2. How to use . 196

5.2.2.1. Common Settings. 197

5.2.2.1.1. DataSource Setting . 197

5.2.2.1.2. MyBatis Setting . 199

5.2.2.1.3. Mapper XML definition . 201

5.2.2.1.4. MyBatis-Spring setting . 201

5.2.2.2. Input. 202

5.2.2.2.1. MyBatisCursorItemReader . 202

5.2.2.3. Mapper interface (Input). 211

5.2.2.3.1. How to use in tasklet model:: . 213

5.2.2.4. Output . 215

5.2.2.4.1. MyBatisBatchItemWriter. 215

5.2.2.4.2. Mapper interface (Output) . 221

5.2.2.5. Database access with Listener . 225

5.2.3. How To Extend . 229

5.2.3.1. Updating multiple tables in CompositeItemWriter . 229

5.2.3.2. How to specify search condition . 233

5.3. File Access . 236

5.3.1. Overview. 236

5.3.1.1. Type of File which can be handled . 236

5.3.1.2. A component that inputs and outputs a flat file . 240

5.3.2. How To Use. 242

5.3.2.1. Variable-length record. 243

5.3.2.1.1. Input . 243

5.3.2.1.2. Output . 246

5.3.2.2. Fixed-length record . 251

5.3.2.2.1. Input . 251

5.3.2.2.2. Output . 256

5.3.2.3. Single String record . 263

5.3.2.3.1. Input . 263

5.3.2.3.2. Output . 264

5.3.2.4. Header and Footer . 266

5.3.2.4.1. Input . 266

5.3.2.4.2. Output . 279

5.3.2.5. Multiple Files . 283

5.3.2.5.1. Input . 283

5.3.2.5.2. Output . 284

5.3.2.6. Control Break . 287

5.3.3. How To Extend . 291

5.3.3.1. Implmementation of FieldSetMapper . 291

5.3.3.2. XML File . 294

5.3.3.2.1. Input . 295

5.3.3.2.2. Output . 299

5.3.3.3. Multi format . 307

5.3.3.3.1. Input . 307

5.3.3.3.2. Output . 312

5.4. Exclusive Control . 318

5.4.1. Overview. 318

5.4.1.1. Necessity of Exclusive Control . 318

5.4.1.2. Exclusive Control for File . 318

5.4.1.3. Exclusive Control of Database . 319

5.4.1.4. Choose Exclusive Control Scheme. 319

5.4.1.5. Relationship between Exclusive Control and Components . 320

5.4.2. How to use . 322

5.4.2.1. Exclusive Control of file. 322

5.4.2.2. Exclusive Control of Database . 325

5.4.2.2.1. Optimistic Lock . 326

5.4.2.2.2. Pessimistic Lock. 327

6. Support to abnormal system . 331

6.1. Input Check . 331

6.1.1. Overview. 331

6.1.1.1. Classification of input validation . 331

6.1.1.2. Overview of Input Validation. 332

6.1.2. How to use . 333

6.1.2.1. Various settings . 334

6.1.2.2. Input validation rule definition. 334

6.1.2.3. Input validation execution . 336

6.1.2.4. Input validation error handling . 337

6.1.2.4.1. Abnormal Termination of Processing . 337

6.1.2.4.2. Skipping Error Records . 340

6.1.2.4.3. Setting the exit code . 341

6.1.2.4.4. Output of error messages . 342

6.2. Exception handling . 345

6.2.1. Overview. 345

6.2.1.1. Classification of exception . 345

6.2.1.2. Exception type . 346

6.2.1.2.1. Business exception . 346

6.2.1.2.2. Library exception occurring during normal operation . 347

6.2.1.2.3. System exception. 347

6.2.1.2.4. Unexpected system exception . 348

6.2.1.2.5. Fatal error . 348

6.2.1.2.6. Invalid job request error . 348

6.2.1.3. How to handle exceptions. 349

6.2.1.3.1. Skip . 349

6.2.1.3.2. Retry . 350

6.2.1.3.3. Process interruption . 350

6.2.2. How to use . 350

6.2.2.1. Step unit exception handling . 351

6.2.2.1.1. Exception handling with ChunkListener interface . 351

6.2.2.1.2. Exception handling in chunk model. 356

6.2.2.1.3. Exception handling in tasklet model . 359

6.2.2.2. Job-level exception handling . 361

6.2.2.3. Determination as to whether processing can be continued . 364

6.2.2.3.1. Skip . 364

6.2.2.3.2. Retry . 373

6.2.2.3.3. Process interruption . 376

6.2.3. Appendix. 377

6.2.3.1. About reason why <skippable-exception-classes> is not used . 377

6.3. Restart processing . 380

6.3.1. Overview. 380

6.3.2. How to use . 381

6.3.2.1. Job rerun . 381

6.3.2.2. Job restart . 381

6.3.2.3. Stateless restart . 382

6.3.2.4. Stateful restart . 385

7. Job Management . 389

7.1. Overview . 389

7.1.1. What is Job Execution Management? . 389

7.1.1.1. Functions Offered by Spring Batch. 389

7.2. How to use . 390

7.2.1. Job Status Management. 391

7.2.1.1. Status Persistence . 392

7.2.1.2. Confirmation of job status/execution result . 393

7.2.1.2.1. Query directly . 393

7.2.1.2.2. Use JobExplorer . 394

7.2.1.3. Stopping a Job . 395

7.2.2. Customizing Exit Codes . 396

7.2.2.1. Change exit codes of step . 396

7.2.2.2. Change exit code of job . 398

7.2.2.3. Mapping of exit codes . 399

7.2.3. Double Activation Prevention . 400

7.2.4. Logging . 400

7.2.4.1. Clarification of log output source . 400

7.2.4.2. Log Monitoring . 402

7.2.4.3. Log Output Destination . 402

7.2.5. Message Management . 402

8. Flow control and parallel, multiple processing . 404

8.1. Flow control. 404

8.1.1. Overview. 404

8.1.2. How to use . 407

8.1.2.1. Sequential flow . 408

8.1.2.2. Passing data between steps . 409

8.1.2.2.1. Data passing between steps using tasklet model . 410

8.1.2.2.2. Data passing between steps using the chunk model. 413

8.1.3. How to extend . 414

8.1.3.1. Conditional branching . 414

8.1.3.2. Stop condition . 415

8.2. Parallel processing and multiple processing . 418

8.2.1. Overview. 418

8.2.1.1. Parallel processing and multiple processing by job scheduler 420

8.2.1.1.1. Parallel processing of jobs using job scheduler . 420

8.2.1.1.2. Multiple processing of jobs using job scheduler . 420

8.2.2. How to use . 421

8.2.2.1. Parallel Step (Parallel processing) . 421

8.2.2.2. Partitioning Step (Multiple processing) . 424

8.2.2.2.1. When number of partitionings are variable . 426

8.2.2.2.2. When number of partitionings are fixed . 433

9. Tutorial . 438

9.1. Introduction. 438

9.1.1. Objective of the tutorial . 438

9.1.2. Target readers . 438

9.1.3. Verification environment . 438

9.1.4. Overview of framework . 438

9.1.5. How to proceed with the tutorial . 439

9.2. Description of the application to be created . 441

9.2.1. Background . 441

9.2.2. Process overview . 441

9.2.3. Business specifications . 441

9.2.4. Learning contents. 441

9.3. Environment construction. 444

9.3.1. Creating a project . 444

9.3.2. Import project . 447

9.3.3. Build project. 450

9.3.4. Verify / edit setup file . 450

9.3.4.1. Verify setup file . 450

9.3.4.2. Editing setting file . 450

9.3.5. Preparation of input data . 451

9.3.5.1. Input data of jobs which inputs or outputs data by accessing database 451

9.3.5.1.1. Create table and initial data insertion script . 451

9.3.5.1.2. Adding settings which executes script automatically while executing a job . . . 454

9.3.5.2. Input data for a job which inputs or outputs data by accessing the file 455

9.3.6. Preparation to refer database from STS . 457

9.3.7. Verify operations of project . 463

9.3.7.1. Execute job in STS . 463

9.3.7.1.1. Creating Run Configuration (Execution configuration) . 463

9.3.7.1.2. Job execution and results verification . 465

9.3.7.2. Refer a database by using Data Source Explorer . 467

9.4. Implementation of batch job . 470

9.4.1. A job which inputs or outputs data by accessing a database . 470

9.4.1.1. Overview. 470

9.4.1.1.1. Background. 470

9.4.1.1.2. Process overview. 470

9.4.1.1.3. Business specifications. 470

9.4.1.1.4. Table specifications. 470

9.4.1.1.5. Job overview. 471

9.4.1.2. Implementation in chunk model. 475

9.4.1.2.1. Creating job Bean definition file . 475

9.4.1.2.2. Implementation of DTO . 476

9.4.1.2.3. Defining database access by using MyBatis . 478

9.4.1.2.4. Implementation of logic. 482

9.4.1.2.5. Job execution and results verification . 486

9.4.1.3. Implementation in tasklet model . 488

9.4.1.3.1. Creating job Bean definition file . 488

9.4.1.3.2. Implementation of DTO . 489

9.4.1.3.3. Defining database access by using MyBatis . 491

9.4.1.3.4. Implementation of logic. 495

9.4.1.3.5. Verifying execution of job and results . 500

9.4.2. A job which inputs or outputs data by accessing a file . 503

9.4.2.1. Overview. 503

9.4.2.1.1. Background. 503

9.4.2.1.2. Process overview. 503

9.4.2.1.3. Business specifications. 503

9.4.2.1.4. File specifications . 503

9.4.2.1.5. Job overview. 504

9.4.2.2. Implementation in chunk model. 509

9.4.2.2.1. Creating a job Bean definition file. 509

9.4.2.2.2. DTO implementation . 510

9.4.2.2.3. Defining file access . 512

9.4.2.2.4. Implementation of logic. 514

9.4.2.2.5. Job execution . 519

9.4.2.3. Implementation in tasklet model . 521

9.4.2.3.1. Creating job Bean definition file . 522

9.4.2.3.2. Implementation of DTO . 522

9.4.2.3.3. Defining file access . 524

9.4.2.3.4. Implementation of logic. 527

9.4.2.3.5. Job executio. 532

9.4.3. A job that validates input data . 535

9.4.3.1. Overview. 535

9.4.3.1.1. Background. 535

9.4.3.1.2. Process overview. 535

9.4.3.1.3. Business specifications. 535

9.4.3.1.4. Table specifications. 536

9.4.3.1.5. Job overview. 536

9.4.3.2. Implementation in Chunk model . 541

9.4.3.2.1. Defining input check rules . 541

9.4.3.2.2. Implementation of input check process . 542

9.4.3.2.3. Job execution . 543

9.4.3.3. Implementation in Tasklet model . 547

9.4.3.3.1. Defining input check rules . 548

9.4.3.3.2. Implementation of input check process . 548

9.4.3.3.3. Job execution . 550

9.4.4. A job which performs exception handling by ChunkListener. 553

9.4.4.1. Overview. 553

9.4.4.1.1. Background. 553

9.4.4.1.2. Process overview. 553

9.4.4.1.3. Business specifications. 553

9.4.4.1.4. Table specifications. 554

9.4.4.1.5. Job overview. 554

9.4.4.2. Implementation in chunk model. 559

9.4.4.2.1. Adding message definition . 559

9.4.4.2.2. Implementation of exception handling . 560

9.4.4.2.3. Job execution and results verification . 564

9.4.4.3. Implementation in tasklet model . 567

9.4.4.3.1. Adding message definition . 568

9.4.4.3.2. Implementation of exception handling . 568

9.4.4.3.3. Job execution and results verification . 571

9.4.5. A job which performs exception handling by try-catch . 575

9.4.5.1. Overview. 575

9.4.5.1.1. Background. 575

9.4.5.1.2. Process overview. 575

9.4.5.1.3. Business specifications. 576

9.4.5.1.4. Table specifications. 576

9.4.5.1.5. Job overview. 576

9.4.5.2. Implementation in chunk model. 581

9.4.5.2.1. Adding message definition . 582

9.4.5.2.2. Customising exit codes . 582

9.4.5.2.3. Implementation of exception handling . 587

9.4.5.2.4. Job execution and results verification . 589

9.4.5.3. Implementation in tasklet model . 592

9.4.5.3.1. Adding message definition . 592

9.4.5.3.2. Customizing exit codes. 593

9.4.5.3.3. Implementation of exception handling . 596

9.4.5.3.4. Job execution and results verification . 598

9.4.6. Asynchronous execution type job. 602

9.4.6.1. Overview. 602

9.4.6.2. Preparation. 602

9.4.6.2.1. Polling process setting . 602

9.4.6.2.2. Job configuration. 603

9.4.6.2.3. Input resource setting . 605

9.4.6.3. Start asynchronous batch daemon . 605

9.4.6.4. Register job information in job request table . 606

9.4.6.5. Job execution results verification . 610

9.4.6.5.1. Verifying console log . 610

9.4.6.5.2. Verifying exit codes . 611

9.4.6.5.3. Verifying output resource . 611

9.4.6.6. Stopping asynchronous batch daemon . 613

9.4.6.7. Verifying job execution status . 614

9.5. Conclusion . 616

10. Summary of points . 617

10.1. Notes on TERASOLUNA Batch 5.x. 617

Chapter 1. Introduction

1.1. Terms of Use
In order to use this document, you are required to agree to abide by the following terms. If you do
not agree with the terms, you must immediately delete or destroy this document and all its
duplicated copies.

1. Copyrights and all other rights of this document shall belong to NTT DATA or third party
possessing such rights.

2. This document may be reproduced, translated or adapted, in whole or in part for personal use.
However, deletion of the terms given on this page and copyright notice of NTT DATA is
prohibited.

3. This document may be changed, in whole or in part for personal use. The creation of secondary
work using this document is allowed. However, “Reference document: TERASOLUNA Batch
Framework for Java (5.x) Development Guideline” or equivalent documents may be mentioned
in created document and its duplicated copies.

4. The document and its duplicated copies created according to previous two clauses may be
provided to third party only if these are free of cost.

5. Use of this document and its duplicated copies, and transfer of rights of this contract to a third
party, in whole or in part, beyond the conditions specified in this contract, are prohibited
without the written consent of NTT Data.

6. NTT DATA shall not bear any responsibility regarding correctness of contents of this document,
warranty of fitness for usage purpose, assurance of accuracy and reliability of usage result,
liability for defect warranty, and any damage incurred directly or indirectly.

7. NTT DATA does not guarantee the infringement of copyrights and any other rights of third party
through this document. In addition to this, NTT DATA shall not bear any responsibility
regarding any claim (including the claims occurred due to dispute with third party) occurred
directly or indirectly due to infringement of copyright and other rights.

This document is created by referring to Macchinetta "Reference document：Macchinetta Batch
Framework Development Guideline".

Registered trademarks or trademarks of company name, service name, and product name of their
respective companies used in this document are as follows.

• TERASOLUNA is a registered trademark of NTT DATA Corporation.

• Macchinetta is the registered trademark of NTT.

• All other company names and product names are the registered trademarks or trademarks of
their respective companies.

1.1.1. Reference

1.1. Terms of Use | 1

1.1.1.1. Macchinetta-Terms of use

In order to use this document, you are required to agree to abide by the following terms. If you do
not agree with the terms, you must immediately delete or destroy this document and all its
duplicate copies.

1. Copyrights and all other rights of this document shall belong to Nippon Telegraph and
Telephone Corporation (hereinafter referred to as "NTT") or third party possessing such rights.

2. This document may be reproduced, translated or adapted, in whole or in part for personal use.
However, deletion of the terms given on this page and copyright notice of NTT is prohibited.

3. This document may be changed, in whole or in part for personal use. Creation of secondary
work using this document is allowed. However, “Reference document: Macchinetta Batch
Framework Development Guideline” or equivalent documents may be mentioned in created
document and its duplicate copies.

4. Document and its duplicate copies created according to previous two clauses may be provided
to third party only if these are free softwares.

5. Use of this document and its duplicate copies, and transfer of rights of this contract to a third
party, in whole or in part, beyond the conditions specified in this contract, are prohibited
without the written consent of NTT.

6. NTT shall not bear any responsibility regarding correctness of contents of this document,
warranty of fitness for usage purpose, assurance for accuracy and reliability of usage result,
liability for defect warranty, and any damage incurred directly or indirectly.

7. NTT does not guarantee the infringement of copyrights and any other rights of third party
through this document. In addition to this, NTT shall not bear any responsibility regarding any
claim (Including the claims occurred due to dispute with third party) occurred directly or
indirectly due to infringement of copyright and other rights.

Registered trademarks or trademarks of company name and service name, and product name of
their respective companies used in this document are as follows.

• Macchinetta is the registered trademark of NTT.

• All other company names and product names are the registered trademarks or trademarks of
their respective companies.

2 | 1.1. Terms of Use

1.2. Introduction

1.2.1. Objective of guideline

This guideline provides best practices to develop Batch applications with high maintainability,
using full stack framework focusing on Spring Framework, Spring Batch and MyBatis.

This guideline helps smooth progress of software development (mainly coding).

1.2.2. Target readers

This guideline is written for architects and programmers having software development experience
and knowledge of the following.

• Basic knowledge of DI and AOP of Spring Framework

• Application development experience using Java

• Knowledge of SQL

• Have experience of using Maven

This guideline is not for Java beginners.

Refer to Spring Framework Comprehension Check to assess whether you have the basic knowledge
to understand the document. If you are unable to answer 40% of the Comprehension test questions,
it is recommended to study separately using following books.

• Spring徹底入門 (翔泳社) [日本語]

• ［改訂新版］Spring入門――Javaフレームワーク・より良い設計とアーキテクチャ [日本語]

• Pro Spring 4th Edition (Apress)

1.2.3. Structure of guideline

For the start, importantly, the guideline is regarded as a subset of TERASOLUNA Server Framework
for Java (5.x) Development Guideline (hereafter, referred to as TERASOLUNA Server 5.x
Development Guideline). By using TERASOLUNA Server 5.x Development Guideline, you can
eliminate duplication in explanation and reduce the cost of learning as much as possible. Since
TERASOLUNA Server 5.x Development Guideline is referenced everywhere, we would like you to
proceed with the development by using both guides.

TERASOLUNA Batch Framework for Java (5.x)concept

Explains the basic concept of batch processing and the basic concept of TERASOLUNA Batch
Framework for Java (5.x) and the overview of Spring Batch.

Flow of application development

Explains the knowledge and method to be kept in mind while developing an application using
TERASOLUNA Batch Framework for Java (5.x).

Running a Job

1.2. Introduction | 3

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/Appendix/SpringComprehensionCheck.html
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://www.shoeisha.co.jp/book/detail/9784798142470
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://gihyo.jp/book/2016/978-4-7741-8217-9
http://www.apress.com/9781430261513
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/index.html
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/index.html

Explains how to running a job as Synchronous, Asynchronous and provide job parameters.

Input/output of data

Explains how to provide Input/Output to various resources such as Database, File access etc.

Handling abnormal cases

Explains how to handle the abnormal conditions like Input checks, Exceptions.

Job management

Explains how to manage the Job execution.

Flow control and parallel/multiple processing

Explains the processing of parallel/multiple Job execution.

Tutorial

Experience batch application development with TERASOLUNA Batch Framework for Java (5.x),
through basic batch application development.

1.2.4. How to read guideline

It is strongly recommended for all the developers to read the following contents for using
TERASOLUNA Batch Framework for Java (5.x).

• TERASOLUNA Batch Framework for Java (5.x) concept

• Flow of application development

The following contents are usually required to be read in advance. It is better to select according to
the development target.

• Start of job

• Input/output of data

• Handling abnormal cases

• Job management

First refer to the following contents when proceeding with advanced implementation.

• Flow control and parallel/multiple processing

Developers who want to experience actual application development by using TERASOLUNA Batch
Framework for Java (5.x) are recommended to read following contents. While experiencing
TERASOLUNA Batch Framework for Java (5.x) for the first time, you should read these contents first
and then move on to other contents.

• Tutorial

1.2.4.1. Notations in guideline

This section describes the notations of this guideline.

4 | 1.2. Introduction

About Windows command prompt and Unix terminal

If Windows and Unix systems don’t work due to differences in notation, both are described.
Otherwise, unified with Unix notation..

Prompt sign

Describe as $ in Unix.

Prompt notation example

$ java -version

About defining properties and constructor of Bean definition

In this guideline, it is described by using namespace of p and c. The use of namespace helps in
simplifying and clarifying the description of Bean definition.

Description wherein namespace is used

<bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.terasoluna.batch.item.file.transform.FixedByteLengthLineTokenizer"
 c:ranges="1-6, 7-10, 11-12, 13-22, 23-32"
 c:charset="MS932"
 p:names="branchId,year,month,customerId,amount"/>
 </property>
</bean>

For your reference, the description not using namespace is shown.

Description not using namespace

<bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.terasoluna.batch.item.file.transform.FixedByteLengthLineTokenizer">
 <constructor-arg index="0" value="1-6, 7-10, 11-12, 13-22, 23-32"/>
 <constructor-arg index="1" value="MS932"/>
 <property name="names" value="branchId,year,month,customerId,amount"/>
 </property>
</bean>

This guideline does not force the user to use a namespace. We would like to consider it for
simplifying the explanation.

1.2.5. Tested environments of guideline

For tested environments of contents described in this guideline, refer to " Tested Environment".

1.2. Introduction | 5

https://github.com/terasoluna-batch/v5-functionaltest/wiki/Tested-Environment

1.3. Change Log

Modified on Modified locations Modification details

2018-3-16 - Released 5.1.1 RELEASE version

General Description details modified
・Version notation of TERASOLUNA Batch Framework for
Java (5.x) changed to 5.1.1.RELEASE (Management ID#374)
・Errors in the guideline (typing errors, simple description
errors etc.) and inconsistency in notation modified
・Link modified due to broken link and change in section

Description details deleted
・Bean definition file deleted from implementation
example since <context:annotation-config/> overlaps with
the role of <context:component-scan> (Management
ID#398)

TERASOLUNA Batch
Framework for Java
(5.x) stack

Description details modified
・OSS version to be used, changed due to version upgrade
of Spring IO platform (Management ID#375)
・Spring Framework version updated to handle
vulnerability (Management ID#494)

Development of batch
application

Description details deleted
・ Comments on "Notes after creating project" deleted
(Management ID#373)

Asynchronous
execution (DB polling)

Description details modified
・File name of asynchronous batch daemon stop file
changed (Management ID#379)

Description details added
・Explanation of customization of clock used in time
stamp added (Management ID#381)

Listener Description details added
・Explanation of job abort in preprocess of job added
(Management ID#402)
・Explanation of points to consider when an exception
occurs in Listener added (Management ID#403)

6 | 1.3. Change Log

Modified on Modified locations Modification details

Database access Description details modified
・How to fetch current time in sample source changed to
use Clock class instead of System class (Management
ID#381)
・The way to divide section by considering input/output
on axis changed (Management ID#167)
・Link modified due to change in section (Management
ID#167)

Description details added
・Explanation of how to pass data as parameter while
searching database using ItemReader, added
(Management ID#267)
・Comments on notes at the time of closing in
MyBatisCursorItemReader added (Management ID#370)

File access Description details modified
・Improved so as to use StringBuilder for joining strings in
"Implementation example of FieldExtractor that formats
double byte characters" (Management ID#228)

Exclusive control Description details modified
・How to fetch current time in sample source changed to
Clock class from System class (Management ID#381)

Input check Description details added
・Explanation about how to output error messages added
(Management ID#326)

Parallel process and
multiple process

Description details modified
・For code example of Bean definition when the number
of divisions is fixed, modified so as to specify type of
parameter to be passed to reader as value-type
(Management ID#267)

Explanation of
application to be
created

Description details modified
・Link to database access function modified in the
correspondence table of job created in tutorial and
explanation of development guidelines (Management
ID#167)

Asynchronous
execution type job

Description details modified
・File name of stop file of asynchronous batch daemon
changed (Management ID#379)

2017-09-27 - Released 5.0.1 RELEASE version

1.3. Change Log | 7

Modified on Modified locations Modification details

General Description details modified
・Errors in the guideline (typing errors, simple description
errors etc.) modified
・Design of the link on the index for header and footer
modified (Management ID#196)
・JDK8 dependent code changed to code prior to JDK7
considering it will be used by persons who do not know
JDK8 (Management ID#231)

Description details added
・Version information added to header and footer
(Management ID#196)

Spring Batch
Architecture

Description details added
・Explanation about character string stored in meta data
table added (Management ID#233)

Description details deleted
・Explanation about job parameter constraints deleted
(Management ID#233)

Create project Description details modified
・Storage directory of Job Bean definition file of blank
project changed (Management ID#161)
・Command execution example and output example
modified to show command prompt and Bash examples
respectively (Management ID#161)
・archetypeVersion specified while creating a project
modified to 5.0.1.RELEASE (Management ID#315)

Create chunk model job Description details modified
・Explanation of id attribute of Bean definition file
modified to a simple expression (Management ID#250)

Create tasklet model
job

Description details modified
・Explanation of id attribute of Bean definition file
modified to a simple expression (Management ID#250)

Description details added
・Explanation of process units considered at the time of
Tasklet implementation added (Management ID#202)

8 | 1.3. Change Log

Modified on Modified locations Modification details

Asynchronous
execution (DB polling)

Description details modified
・Suffix of class name modified to Repository
(Management ID#241)
・Explanation for job request sequence modified to the
details which are not dependent on specific RDBMS
products (Management ID#233)

Description details added
・Explanation for character string which is stored in job
request table added (Management ID#233)
・Explanation for job request acquisition SQL added
(Management ID#233)

Job start-up parameter Description details modified
・Example for referencing parameters modified so as to
enclose the character string literal with single quotes
(Management ID#246)

Listener Description details modified
・JobExecutionListener implementation example
modified to present a simpler code example (Management
ID#271)

Description details added
・Link for exception handling in ChunkListener
explanation added (Management ID#194)
・In case of tasklet model, added precautions to the
explanation where the listener is set (Management
ID#194)

Transaction control Description details modified
・Code example of intermediate commit method in tasklet
model modified to the example which uses
jobResourcelessTransactionManager (Management
ID#262)

Description details added
・Explanation of jobResourcelessTransactionManager
added to intermediate commit method in tasklet model
(Management ID#262)

Database access Description details added
・Example to update multiple tables by using
CompositeItemWriter added (Management ID#226)
・Notes while using Oracle JDBC in Linux environment
added (Management ID#237)

1.3. Change Log | 9

Modified on Modified locations Modification details

File access Description details modified
・FlatFileItemWriter and StaxEventItemWriter property
explanation modified (Management ID#198)

Description details added
・Explanation that unintended file deletion is done by
combination of FlatFileItemWriter and
StaxEventItemWriter property setting is added
(Management ID#198)

Exclusive control Description details modified
・Code example of pessimistic lock in chunk model
modified (Management ID#204)
・Code example of exclusive control of file modified so as
to fetch file lock before opening file for exclusion
(Management ID#225)

Job management Description details deleted
・Description related to Spring Batch Admin along with
termination of Spring Batch Admin project deleted
(Management ID#209)

Customization of exit
codes

Description details added
・Explanation for significance of exit codes added to
Customization of exit codes (Management ID#294)
・Code example for changing exit codes of step in tasklet
model added to Customization of exit codes (Management
ID#294)

Message management Description details modified
・Bean definition of ResourceBundleMessageSource
modified (Management ID#266)

Tutorial New chapter added
・Tutorial added (Management ID#200)

2017-03-17 - Released 5.0.0 RELEASE version

10 | 1.3. Change Log

Chapter 2. TERASOLUNA Batch Framework
for Java (5.x) concept

2.1. Batch Processing in General

2.1.1. Introduction to Batch Processing

The term of "Batch Processing" refers to the execution or the process of a series of jobs in a
computer program without manual intervention (non-interactive).
It is often a process of reading, processing and writing a large number of records from a database
or a file.
Batch processing is a processing method which prioritizes process throughput over responsiveness,
as compared to online processing and consists of the following features.

Characteristics of batch processing

• Process data in a fixed amount.

• Uninterruptible process is done in the certain time and fixed sequence.

• Process runs in accordance with the schedule.

Objective of batch processing is given below.

Enhanced throughput

Process throughput can be enhanced by processing the data sets collectively in a batch.
File or database does not input or output data one by one, and instead sums up data of a fixed
quantity thus dramatically reducing overheads of waiting for I/O resulting in the increased
efficiency. Even though the waiting period for I/O of a single record is insignificant, cumulative
accumulation results in fatal delay while processing a large amount of data.

Ensuring responsiveness

Processes which are not required to be processed immediately are cut for batch processing in
order to ensure responsiveness of online processing.
For example, when the process results are not required immediately, the processing is done until
acceptance by online processing and, batch processing is performed in the background. The
processing method is generally called "delayed processing".

Response to time and events

Processes corresponding to specific period and events are naturally implemented by batch
processing.
For example, aggregating a month’s data on 1st weekend of next month according to business
requirement,
taking a week’s backup of business data on Sunday at 2 a.m. in accordance with the system
operation rules,
and so on.

Restriction for coordination with external system

2.1. Batch Processing in General | 11

Batch processing is also used due to restrictions of interface like files with interactions of
external systems.
File sent from the external system is a summary of data collected for a certain period. Batch
processing is better suited for the processes which incorporate these files, than the online
processing.

It is very common to combine various techniques to achieve batch processing. Major techniques are
introduced here.

Job Scheduler

A single execution unit of a batch processing is called a job. A job scheduler is a middleware to
manage this job.
A batch system rarely has several jobs, and usually the number of jobs can reach hundreds or
even thousands at times. Hence, an exclusive system to define the relation with the job and
manage execution schedule becomes indispensable.

Shell script

It is one of the methods to implement a job. A process is achieved by combining the commands
implemented in OS and middleware.
Although the method can be implemented easily, it is not suitable for writing complex business
logic. Hence, it is primarily used in simple processes like copying a file, backup, clearing a table
etc. Further, shell script performs only the pre-start settings and post-execution processing while
executing a process implemented in another programming language.

Programming language

It is one of the methods to implement a job. Structured code can be written rather than the shell
script and is advantageous for securing development productivity, maintainability and quality.
Hence, it is commonly used to implement business logic that processes data of file or database
which tend to be relatively complex with logic.

2.1.2. Requirements for batch processing

Requirements for batch processing in order to implement business process are given as below.

• Performance improvement

◦ A certain quantity of data can be processed in a batch.

◦ Jobs can be executed in parallel/in multiple.

• Recovery in case of an abnormality

◦ Jobs can be reexecuted (manual/schedule).

◦ At the time of reprocessing, it is possible to process only unprocessed records by skipping
processed records.

• Various activation methods for running jobs

◦ Synchronous execution possible.

◦ Asynchronous execution possible.

▪ DB polling, HTTP requests can be used as opportunities for execution.

12 | 2.1. Batch Processing in General

• Various input and output interfaces

◦ Database

◦ File

▪ Variable length like CSV or TSV

▪ Fixed length

▪ XML

Specific details for the above requirements are given below.

A large amount of data can be efficiently processed using certain resources (Performance
improvement)

Processing time is reduced by processing the data collectively. The important part here is
"Certain resources" part.
Processing can be done by using a CPU and memory for 100 or even 1 million records and the
processing time is ideally extended slowly and linearly according to the number of records.
Transaction is started and terminated for certain number of records to perform a process
collectively. The used resources must be levelled in order to perform I/O collectively.
If you still want to deal with enormous amounts of data that can not be handled, you will need to
add a mechanism to move the hardware resources one step further to the limit. Data to be
processed is divided into records or groups. Then, multiple processing is done by using multiple
processes and multiple threads. Moving ahead, distributed processing using multiple machines
is also implemented. When resources are used upto the limit, it becomes extremely important to
reduce as much as possible.

Continue the processing as much as possible (Recovery at the time of occurrence of abnormality)

In processing large amounts of data, the countermeasures must be considered when an
abnormality occurs in input data or system itself.
Large amounts of data inevitably take a long time to finish processing, but if the time to recover
after the occurrence of error is prolonged, the system operation will be greatly affected.
For example, consider a data consisting of 1 billion records to be processed. Operation schedule
would be obviously affected a great deal if error is detected in 999 millionth record and the
processing so far is to be performed all over again.
To control this impact, process continuity unique to batch processing becomes very important.
Hence a mechanism to process the next data while skipping error data, a mechanism to restart
the process and a mechanism which attempts auto-recovery as much as possible and so on,
becomes necessary. Further, it is important to simplify a job as much as possible and make re-
execution easier.

Can be executed flexibly according to triggers of execution (various activation methods)

In case of time triggered, a mechanism to deal with various execution opportunities such as
when triggered by online and external system cooperation is necessary. Various systems are
widely known such as synchronous processing wherein processing starts when the job
scheduler reaches scheduled time, asynchronous processing wherein the process is kept
resident and batch processing is performed as per the events.

Handles various input and output interfaces (Various input output interfaces)

2.1. Batch Processing in General | 13

It is important to handle various files like CSV/XML as well as databases for linking online and
external systems. Further, if a method which transparently handles respective input and output
method exists, implementation becomes easier and to deal with various formats becomes more
quickly.

2.1.3. Rules and precautions to be considered in batch processing

Important rules while building a batch processing system and a few considerations are shown.

• Simplify unit batch processing as much as possible and avoid complex logical structures.

• Keep process and data in physical proximity (Save data at the location where process is
executed).

• Minimise the use of system resources (especially I/O) and execute operations in in-memory as
much as possible.

• Further, review I/O of application (SQL etc) to avoid unnecessary physical I/O.

• Do not repeat the same process for multiple jobs.

◦ For example, in case of counting and reporting process, avoid repetition of counting process
during reporting process.

• Always assume the worst situation related to data consistency. Verify data to check and to
maintain consistency.

• Review backups carefully. The difficulty level of backup will be high especially when the system
is operational seven days a week.

14 | 2.1. Batch Processing in General

2.2. TERASOLUNA Batch Framework for Java (5.x)
stack

2.2.1. Overview

Explains the TERASOLUNA Batch Framework for Java (5.x)configuration and shows the scope of
responsibility of TERASOLUNA Batch Framework for Java (5.x).

2.2.2. TERASOLUNA Batch Framework for Java (5.x) stack

Software Framework used in the TERASOLUNA Batch Framework for Java (5.x) is a combination of
OSS focusing on Spring Framework (Spring Batch) A stack schematic diagram of the TERASOLUNA
Batch Framework for Java (5.x) is shown below.

TERASOLUNA Batch Framework for Java (5.x) stack - schematic diagram

Descriptions for products like job scheduler and database are excluded from this guideline.

2.2.2.1. OSS version to be used

List of OSS versions to be used in 5.1.1.RELEASE of TERASOLUNA Batch Framework for Java (5.x) is
given below.

As a rule, OSS version to be used in the TERASOLUNA Batch Framework for Java
(5.x) conforms to the definition of the Spring IO platform. Note that, the version of
Spring IO platform in 5.1.1.RELEASE is Brussels-SR5.
For details of Spring IO platform, refer OSS version to be used by the TERASOLUNA
Server Framework for Java (5.x).

OSS version list

2.2. TERASOLUNA Batch Framework for Java (5.x) stack | 15

http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-batch/
https://docs.spring.io/platform/docs/Brussels-SR5/reference/htmlsingle/
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/Overview/FrameworkStack.html#oss

Type GroupId ArtifactId Version Spr
ing
IO
pla
tfo
rm

Re
ma
rks

Spring org.springframework spring-aop 4.3.14.RELEA
SE

*2

Spring org.springframework spring-beans 4.3.14.RELEA
SE

*2

Spring org.springframework spring-context 4.3.14.RELEA
SE

*2

Spring org.springframework spring-expression 4.3.14.RELEA
SE

*2

Spring org.springframework spring-core 4.3.14.RELEA
SE

*2

Spring org.springframework spring-tx 4.3.14.RELEA
SE

*2

Spring org.springframework spring-jdbc 4.3.14.RELEA
SE

*2

Spring Batch org.springframework.b
atch

spring-batch-core 3.0.8.RELEAS
E

*

Spring Batch org.springframework.b
atch

spring-batch-
infrastructure

3.0.8.RELEAS
E

*

Spring Retry org.springframework.r
etry

spring-retry 1.2.1.RELEAS
E

*

Java Batch javax.batch javax.batch-api 1.0.1 *

Java Batch com.ibm.jbatch com.ibm.jbatch-tck-spi 1.0 *

MyBatis3 org.mybatis mybatis 3.4.5

MyBatis3 org.mybatis mybatis-spring 1.3.1

MyBatis3 org.mybatis mybatis-typehandlers-
jsr310

1.0.2

DI javax.inject javax.inject 1 *

Log output ch.qos.logback logback-classic 1.1.11 *

Log output ch.qos.logback logback-core 1.1.11 * *1

Log output org.slf4j jcl-over-slf4j 1.7.25 *

Log output org.slf4j slf4j-api 1.7.25 *

Input check javax.validation validation-api 1.1.0.Final *

16 | 2.2. TERASOLUNA Batch Framework for Java (5.x) stack

Type GroupId ArtifactId Version Spr
ing
IO
pla
tfo
rm

Re
ma
rks

Input check org.hibernate hibernate-validator 5.3.5.Final *

Input check org.jboss.logging jboss-logging 3.3.1.Final * *1

Input check com.fasterxml classmate 1.3.4 * *1

Connection pool org.apache.commons commons-dbcp2 2.1.1 *

Connection pool org.apache.commons commons-pool2 2.4.2 *

Expression Language org.glassfish javax.el 3.0.0 *

In-memory database com.h2database h2 1.4.193 *

XML com.thoughtworks.xstr
eam

xstream 1.4.10 * *1

JSON org.codehaus.jettison jettison 1.2 * *1

Remarks

1. Libraries on which the libraries supported by the Spring IO platform depend
independently

2. Set a version different from Spring IO platform version to handle vulnerability

Regarding standard error output of xstream

When xstream version is 1.4.10, Bean definition is read by Spring Batch and the
following message is output in standard error output while executing job.

Security framework of XStream not initialized, XStream is probably
vulnerable.

Currently, XStream security settings cannot be done in Spring Batch so message
output cannot be controlled.

When using XStream other than importing the developed job Bean definition (such
as data linkage), do not load with XStream except for trusted source XML.

2.2.3. Structural elements of TERASOLUNA Batch Framework for Java (5.x)

Software Framework structural elements of the TERASOLUNA Batch Framework for Java (5.x) are
explained.

2.2. TERASOLUNA Batch Framework for Java (5.x) stack | 17

Schematic diagram of Software Framework structural elements

Overview of each element is shown below.

Foundation framework

Spring Framework is used as a framework foundation. Various functions are applied starting
with DI container.

• Spring Framework 4.3

Batch framework

Spring Batch is used as a batch framework.

• Spring Batch 3.0

Asynchronous execution

Following functions are used as a method to execute asynchronous execution.

Periodic activation by using DB polling

A library offered by TERASOLUNA Batch Framework for Java (5.x) is used.

• "Asynchronous execution (DB polling)"

Web container activation

Link with Spring Batch using Spring MVC.

18 | 2.2. TERASOLUNA Batch Framework for Java (5.x) stack

http://docs.spring.io/spring/docs/4.3.11.RELEASE/spring-framework-reference/htmlsingle/#spring-core
http://docs.spring.io/spring-batch/trunk/reference/html/index.html

• Spring MVC 4.3

O/R Mapper

Use MyBatis, and use MyBatis-Spring as a library to coordinate with Spring Framework.

• MyBatis 3.4

• MyBatis-Spring

File access

In addition to Function offered from Spring Batch, TERASOLUNA Batch Framework for Java (5.x)
is used as an auxiiliary function.

• "File access"

Logging

Logger uses SLF4J in API and Logback in the implementation.

• SLF4J

• Logback

Validation

Unit item check

Bean Validation is used in unit item check and Hibernate Validator is used for
implementation.

• Bean Validation 1.1

• Hibernate Validator 5.3

Correlation check

Bean Validation or Spring Validation is used for correlation check.

• Spring Validation

Connection pool

DBCP is used in the connection pool.

• DBCP 2

• Commons Pool 2

A function wherein TERASOLUNA Batch Framework for Java (5.x) provides implementation

A function, wherein TERASOLUNA Batch Framework for Java (5.x) provides implementation is
given below.

A function list wherein TERASOLUNA Batch Framework for Java (5.x) offers implementation

Function name Overview

"Asynchronous execution (DB polling)" Asynchronous execution using DB polling is implemented.

2.2. TERASOLUNA Batch Framework for Java (5.x) stack | 19

http://docs.spring.io/spring/docs/4.3.11.RELEASE/spring-framework-reference/html/mvc.html
http://www.mybatis.org/mybatis-3/
http://www.mybatis.org/spring/
http://docs.spring.io/spring-batch/trunk/reference/html/readersAndWriters.html#flatFiles
https://www.slf4j.org/
https://logback.qos.ch/
http://download.oracle.com/otn-pub/jcp/bean_validation-1_1-fr-eval-spec/bean-validation-specification.pdf
http://docs.jboss.org/hibernate/validator/5.3/reference/en-US/html/
http://docs.spring.io/spring/docs/4.3.11.RELEASE/spring-framework-reference/html/validation.html#validator
https://commons.apache.org/proper/commons-dbcp/
https://commons.apache.org/proper/commons-pool/

"File access"

Read fixed-length file without line breaks by number of
bytes.

Break down a fixed length record in individual field by
number of bytes.

Control output of enclosed characters by variable length
records.

20 | 2.2. TERASOLUNA Batch Framework for Java (5.x) stack

2.3. Spring Batch Architecture

2.3.1. Overview

Spring Batch architecture acting as a base for TERASOLUNA Server Framework for Java (5.x) is
explained.

2.3.1.1. What is Spring Batch

Spring Batch, as the name implies is a batch application framework. Following functions are
offered based on DI container of Spring, AOP and transaction control function.

Functions to standardize process flow

Tasket model

Simple process

It is a method to freely describe a process. It is used in a simple cases like issuing SQL once,
issuing a command etc and the complex cases like performing processing while accessing
multiple database or files, which are difficult to standardize.

Chunk model

Efficient processing of large amount of data

A method to collectively input/process/output a fixed amount of data. Job can be
implemented simply by standardizing the flow of processing such as input / processing /
output of data and implementing a part.

Various activation methods

Execution is achieved by various triggers like command line execution, execution on Servlet and
other triggers.

I/O of various data formats

Input and output for various data resources like file, database, message queue etc can be
performed easily.

Efficient processing

Multiple execution, parallel execution, conditional branching are done based on the settings.

Job execution control

Permanence of execution status, restart based on the number of data items, and so on can be
possible.

2.3.1.2. Hello, Spring Batch！

If Spring Batch is not covered in understanding of Spring Batch architecture so far, the official
documentation given below should be read. We would like you to get used to Spring Batch through
creating simple application.

Creating a Batch Service

2.3. Spring Batch Architecture | 21

https://spring.io/guides/gs/batch-processing/

2.3.1.3. Basic structure of Spring Batch

Basic structure of Spring Batch is explained.

Spring Batch defines structure of batch process. It is recommended to perform development after
understanding the structure.

Primary components appearing in Spring Batch

Primary components appearing in Spring Batch

Components Roles

Job
A single execution unit that summarises a series of processes for batch
application in Spring Batch.

Step

A unit of processing which constitutes Job. 1 job can contain 1~N steps
Reusing a process, parallelization, conditional branching can be performed by
dividing 1 job process in multiple steps. Step is implemented by either chunk
model or tasket model(will be described later).

JobLauncher

An interface for running a Job.
JobLauncher can be directly used by the user, however, a batch process can be
started simply
by starting CommandLineJobRunner from java command. CommandLineJobRunner
undertakes various processes for starting JobLauncher.

22 | 2.3. Spring Batch Architecture

Components Roles

ItemReader
ItemProcessor
ItemWriter

When implementing the chunk model, it is an interface for dividing it into
three pieces of data input / processing / output.
Batch application consists of processing of these 3 patterns and in Spring
Batch, implementation of these interfaces is utilized primarily in chunk model.
User describes business logic by dividing it according to respective roles.
Since ItemReader and ItemWriter responsible for data input and output are
often the processes that perform conversion of database and files to Java
objects and vice versa, a standard implementation is provided by Spring
Batch. In general batch applications which perform input and output of data
from file and database, conditions can be satisfied just by using standard
implementation of Spring Batch as it is.
ItemProcessor which is responsible for processing data implements input
check and business logic.

In Tasket model, ItemReader/ItemProcessor/ItemWriter substitutes a single
Tasklet interface implementation. Input-Output, Input check and business
logic all must be implemented in Tasklet.

JobRepository
A mechanism for managing the status of Job and Step. The management
information is persisted on the database based on the table schema specified
by Spring Batch.

2.3.2. Architecture

Basic structure of Spring Batch is briefly explained in Overview.

Following points are explained on this basis.

• Overall process flow

• Running a Job

• Execution of business logic

• Metadata schema of JobRepository

In the end, performance tuning points of batch application which use Spring Batch are explained.

• Typical performance tuning points

2.3.2.1. Overall process flow

Primary components of Spring Batch and overall process flow is explained. Further, explanation is
also given about how to manage meta data of execution status of jobs.

Primary components of Spring Batch and overall process flow (chunk model) are shown in the
figure below.

2.3. Spring Batch Architecture | 23

Primary components of Spring Batch and overall process flow

Main processing flow (black line) and the flow which persists job information (red line) are
explained.

Main processing flow

1. JobLauncher is initiated from the job scheduler.

2. Job is executed from JobLauncher.

3. Step is executed from Job.

4. Step fetches input data by using ItemReader.

5. Step processes input data by using ItemProcessor.

6. Step outputs processed data by using ItemWriter.

Flow for persisting job information

1. JobLauncher registers JobInstance in Database through JobRepository.

2. JobLauncher registers that Job execution has started in Database through JobRepository.

3. JobStep updates miscellaneous information like counts of I/O records and status in Database
through JobRepository.

4. JobLauncher registers that Job execution has completed in Database through JobRepository.

Description of JobRepository focusing on components and persistence is shown as follows.

Components related to persistence

24 | 2.3. Spring Batch Architecture

Components Roles

JobInstance

Spring Batch indicates "logical" execution of a Job. JobInstance is identified by
Job name and arguments. In other words, execution with identical Job name
and argument is identified as execution of identical JobInstance and Job is
executed as a continuation from previous activation.
When the target Job supports re-execution and the process was suspended in
between due to error in the previous execution, the job is executed from the
middle of the process. On the other hand, when the target job does not support
re-execution or when the target JobInstance has already been successfully
processed, exception is thrown and Java process is terminated abnormally. For
example, JobInstanceAlreadyCompleteException is thrown when the process
has already been completed successfully.

JobExecution
ExecutionContext

JobExecution indicates "physical" execution of Job. Unlike JobInstance, it is
termed as another JobExecution even while re-executing identical Job. As a
result, JobInstance and JobExecution shows one-to-many relationship.
ExecutionContext is considered as an area for sharing metadata such as
progress of a process in identical JobExecution. ExecutionContext is primarily
used for enabling Spring Batch to record framework status, however, means to
access ExecutionContext by the application is also provided.
The object stored in the JobExecutionContext must be a class which
implements java.io.Serializable.

StepExecution
ExecutionContext

StepExecution indicates "physical" execution of Step. JobExecution and
StepExecution shows one-to-many relationship.
Similar to JobExecution, ExecutionContext is an area for sharing data in Step.
From the viewpoint of localization of data, information which is not required
to be shared by multiple steps should use ExecutionContext of target step
instead of using ExecutionContext of Job.
The object stored in StepExecutionContext must be a class which implements
java.io.Serializable.

JobRepository

A function to manage and persist data for managing execution results and
status of batch application like JobExecution or StepExecution is provided.
In general batch applications, the process is started by starting a Java process
and in many cases, the Java process is also terminated at the end of
processing. Hence, since the data is likely to be referred across Java process, it
is stored in volatile memory as well as permanent layers like database. When
data is to be stored in the database, database objects like table or sequence are
required for storing JobExecution or StepExecution.
It is necessary to generate a database object based on schema information
provided by Spring Batch.

The reason why Spring Batch is heavily managing metadata is to realize re-execution. In order to
make batch processing re-executable, it is necessary to keep the snapshot at the last execution, the
metadata and JobRepository are the basis for that.

2.3.2.2. Running a Job

How to run a Job is explained.

A scenario is considered wherein a batch process is started immediately after starting Java process

2.3. Spring Batch Architecture | 25

and Java process is terminated after batch processing is completed. Figure below shows a process
flow from starting a Java process till starting a batch process.

Process flow from starting a Java process till starting a batch process

Starting a Java process and starting a Job

At the same time as the Java process is started, it is common to describe shell script that starts Java
to start the Job defined on Spring Batch. When CommandLineJobRunner offered by Spring Batch is
used, Job on Spring Batch defined by the user can be easily started.

The start command of the job which uses CommandLineJobRunner is shown as below.

Start command when a Bean is defined by using XML

java -cp ${CLASSPATH}
org.springframework.batch.core.launch.support.CommandLineJobRunner <jobPath> <jobName>
<JobArgumentName1>=<value1> <JobArgumentName2>=<value2> ...

Specifying a Job parameter

CommandLineJobRunner can pass arguments (job parameters) as well along with Job name to be
started. Arguments are specified in <Job argument name>=<Value> format as per the example
described earlier. All arguments are interpreted and checked by CommandLineJobRunner or

26 | 2.3. Spring Batch Architecture

JobLauncher, stored in JobExecution after conversion to JobParameters. For details, refer to startup
parameters of Job.

Register and restore JobInstance

JobLauncher fetches Job name from JobRepository and JobInstance matching with the argument
from the database.

• When corresponding JobInstance does not exist, JobInstance is registered as new.

• When corresponding JobInstance exists, the associated JobExecution is restored.

◦ Spring Batch has adopted a method of adding arguments for JobInstance only to make it
unique, for the jobs that may run repeatedly, such as daily execution. For example, adding
system date or random number to arguments are listed.
For the method recommended in this guideline, refer parameter conversion class.

2.3.2.3. Execution of business logic

Job is divided into smaller units called steps in Spring Batch. When Job is started, Job activates
already registered steps and generates StepExecution. Step is a framework for dividing the process
till the end and execution of business logic is delegated to Tasket called from Step.

Flow from Step to Tasklet is shown below.

Process flow from Step to Tasklet

A couple of methods can be listed as the implementation methods of Tasklet - "Chunk model" and
"Tasket model". Since the overview has already been explained, the structure will be now explained
here.

2.3. Spring Batch Architecture | 27

2.3.2.3.1. Chunk model

As described above, chunk model is a method wherein the processing is performed in a certain
number of units (chunks) rather than processing the data to be processed one by one unit.
ChunkOrientedTasklet acts as a concrete class of Tasklet which supports the chunk processing.
Maximum records of data to be included in the chunk (hereafter referred as "chunk size") can be
adjusted by using setup value called commit-interval of this class. ItemReader, ItemProcessor and
ItemWriter are all the interfaces based on chunk processing.

Next, explanation is given about how ChunkOrientedTasklet calls the ItemReader, ItemProcessor
and ItemWriter.

A sequence diagram wherein ChunkOrientedTasklet processes one chunk is shown below.

Chunk processing by using ChunkOrientedTasklet

ChunkOrientedTasklet repeatedly executes ItemReader and ItemProcessor by the chunk size, in
other words, reading and processing of data. After completing reading all the data of chunks, data
writing process of ItemWriter is called only once and all the processed data in the chunks is passed.
Data update processing is designed to be called once for chunks to enable easy organising like
addBatch and executeBatch of JDBC.

Next, ItemReader, ItemProcessor and ItemWriter which are responsible for actual processing in
chunk processing are introduced. Although it is assumed that the user handles his own
implementation for each interface, it can also be covered by a generic concrete class provided by
Spring Batch.

Especially, since ItemProcessor describes the business logic itself, the concrete classes are hardly
provided by Spring Batch. ItemProcessor interface is implemented while describing the business

28 | 2.3. Spring Batch Architecture

logic. ItemProcessor is designed to allow types of objects used in I/O to be specified in respective
type argument so that typesafe programming is enabled.

An implementation example of a simple ItemProcessor is shown below.

Implementation example of ItemProcessor

public class MyItemProcessor implements
 ItemProcessor<MyInputObject, MyOutputObject> { // (1)
 @Override
 public MyOutputObject process(MyInputObject item) throws Exception { // (2)

 MyOutputObject processedObject = new MyOutputObject(); // (3)

 // Coding business logic for item of input data

 return processedObject; // (4)
 }
}

Sr. No. Description

(1) Implement ItemProcessor interface which specifies the types of objects used for input
and output in respective type argument.

(2) Implement process method. Argument item is input data.

(3) Create output object and store business logic results processed for the input data item.

(4) Return output object.

Various concrete classes are offered by Spring Batch for ItemReader or ItemWriter and these are
used quite frequently. However, when a file of specific format is to be input or output, a concrete
class which implements individual ItemReader or ItemWriter can be created and used.

For implementation of business logic while developing actual application, refer Application
development flow.

Representative concrete classes of ItemReader, ItemProcessor and ItemWriter offered by Spring
Batch are shown in the end.

Representative concrete classes of ItemReader, ItemProcessor and ItemReader offered by Spring Batch

2.3. Spring Batch Architecture | 29

Interface Concrete class name Overview

ItemReader

FlatFileItemReader Read flat files (non-structural files) like CSV file. Mapping
rules for delimiters and objects can be customised by
using Resource object as input.

StaxEventItemReader
Read XML file. As the name implies, it is an
implementation which reads a XML file based on StAX.

JdbcPagingItemReader
JdbcCursorItemReader

Execute SQL by using JDBC and read records on the
database. When a large amount of data is to be processed
on the database, it is necessary to avoid reading all the
records on memory, and to read and discard only the data
necessary for one processing.
JdbcPagingItemReader is implemented by dividing SELECT
SQL for each page by using JdbcTemplate and then issuing
the same. On the other hand, JdbcCursorItemReader is
implemented by issuing one SELECT SQL by using JDBC
cursor.
 Using MyBatis is considered as a base in TERASOLUNA
Batch 5.x.

MyBatisCursorItemRea
der
MyBatisPagingItemRea
der

Read records on the database in coordination with
MyBatis. Spring coordination library offered by MyBatis is
provided by MyBatis-Spring. For the difference between
Paging and Cursor, it is same as JdbcXXXItemReader
except for using MyBatis for implementation. In addition,
JpaPagingItemReader, HibernatePagingItemReader and
HibernateCursor are provided which read records on the
database by coordinating with ItemReaderJPA
implementation or Hibernate.

 Using MyBatisCursorItemReader is considered as a base in
TERASOLUNA Batch 5.x.

JmsItemReader
AmqpItemReader

Receive messages from JMS or AMQP and read the data
contained within it.

30 | 2.3. Spring Batch Architecture

Interface Concrete class name Overview

ItemProcesso
r

PassThroughItemProce
ssor

No operation is performed. It is used when processing and
modification of input data is not required.

ValidatingItemProcesso
r

Performs input check. It is necessary to implement Spring
Batch specific
org.springframework.batch.item.validator.Validator for
the implementation of input check rules.
However, SpringValidator which is an adaptor to the
general purpose org.springframework.validation.Validator
by Spring is provided and the rule of
org.springframework.validation.Validator can be used.
 Use of ValidatingItemProcessor is prohibited in
TERASOLUNA Batch 5.x.
For details, refer Input check.

CompositeItemProcesso
r

Sequentially execute multiple ItemProcessor for identical
input data. It is enabled when business logic is to be
executed after performing input check using
ValidatingItemProcessor.

ItemWriter

FlatFileItemWriter Write processed Java object as a flat file like CSV file.
Mapping rules for file lines can be customised from
delimiters and objects.

StaxEventItemWriter Write processed Java object as a XML file.

JdbcBatchItemWriter
Execute SQL by using JDBC and output processed Java
object to database. Internally JdbcTemplate is used.

MyBatisBatchItemWrit
er

Coordinate with MyBatis and output processed Java object
to the database. It is provided by Spring coordination
library MyBatis-Spring offered by MyBatis.
 JPA implementation or JpaItemWriter and
HibernateItemWriter for Hibernate is not used in
TERASOLUNA Batch 5.x.

JmsItemWriter
AmqpItemWriter

Send a message of a processed Java object with JMS or
AMQP.

2.3. Spring Batch Architecture | 31

PassThroughItemProcessor omitted

When a job is defined in XML, ItemProcessor setting can be omitted. When it is
omitted, input data is passed to ItemWriter without performing any operation
similar to PassThroughItemProcessor.

ItemProcessor omitted

<batch:job id="exampleJob">
 <batch:step id="exampleStep">
 <batch:tasklet>
 <batch:chunk reader="reader" writer="writer" commit-
interval="10" />
 </batch:tasklet>
 </batch:step>
</batch:job>

2.3.2.3.2. Tasket model

Chunk model is a framework suitable for batch applications that read multiple input data one by
one and perform a series of processing. However, a process which does not fit with the type of
chunk processing is also implemented. For example, when system command is to be executed,
when only one record in control table is to be updated etc.

In such a case, merits of efficiency obtained by chunk processing are very less and demerits owing
to difficult design and implementation are significant. Hence, it is rational to use tasket model.

It is necessary for the user to implement Tasket interface provided by Spring Batch while using a
Tasket model. Further, following concrete class is provided in Spring Batch, subsequent description
is not given in TERASOLUNA Batch 5.x.

Concrete class of Tasket offered by Spring Batch

Class name Overview

SystemCommandTasklet

Tasket to execute system commands asynchronously. Command to
be specified in the command property is specified.
Since the system command is executed by a thread different from
the thread for calling, it is possible to set a timeout and cancel the
execution thread of the system command during the process.

MethodInvokingTaskletAda
pter

Tasket for executing specific methods of POJO class. Specify Bean of
target class in targetObject property and name of the method to be
executed in targetMethod property.
POJO class can return batch process termination status as a return
value of the method, however then the ExitStatus described later
must be set as a return value. When a value of another type is
returned, the status is considered as "normal termination
(ExistStatus: COMPLETED) regardless of the return value.

32 | 2.3. Spring Batch Architecture

2.3.2.4. Metadata schema of JobRepository

Metadata schema of JobRepository is explained.

Note that, overall picture is explained including the contents explained in Spring Batch reference
Appendix B. Meta-Data Schema

Spring Batch metadata table corresponds to a domain object (Entity object) which are represented
by Java.

Correspondence list

Table Entity object Overview

BATCH_JOB_INSTANCE JobInstance Retains the string which serialises job
name and job parameter.

BATCH_JOB_EXECUTION JobExecution Retains job status and execution
results.

BATCH_JOB_EXECUTION_PA
RAMS

JobExecutionParams Retains job parameters assigned at the
startup.

BATCH_JOB_EXECUTION_CO
NTEXT

JobExecutionContext Retains the context inside the job.

BATCH_STEP_EXECUTION StepExecution Retains status and execution results of
step, number of commits and
rollbacks.

BATCH_STEP_EXECUTION_C
ONTEXT

StepExecutionContext Retains context inside the step.

JobRepository is responsible for accurately storing the contents stored in each Java object, in the
table.

Regarding the character string stored in the meta data table

Character string stored in the meta data table allows only a restricted number of
characters and when this limit is exceeded, character string is truncated.
Note that, multibyte characters are not taken into consideration in Spring Batch
and an error is likely to occur in DDL of meta data table offered by Spring Batch
even if character string to be stored is within the character limit. It is necessary to
extend the size by encoding using a column of meta data table, and to set the
character data type in character count definition, in order to store multibyte
characters.

Oracle Schema provided by Spring Batch offers a DDL for Oracle in TERASOLUNA
Batch 5.x that explicitly sets character data type in character count definition since
character data type of database is defined by default number of bytes.
DDL to be offered is included in the org.terasoluna.batch package which is
included in jar of TERASOLUNA Batch 5.x.

6 ERD models of all the tables and interrelations are shown below.

2.3. Spring Batch Architecture | 33

http://docs.spring.io/spring-batch/trunk/reference/html/metaDataSchema.html

ER diagram

2.3.2.4.1. Version

Majority of database tables contain version columns. This column is important since Spring Batch
adopts an optimistic locking strategy to handle updates to database. This record signifies that it is
updated when the value of the version is incremented. When JobRepository updates the value and
the version number is changed, an OptimisticLockingFailureException which indicates an
occurrence of simultaneous access error is thrown. Other batch jobs may be running on different
machines, however, all the jobs use the same database, hence this check is required.

2.3.2.4.2. ID (Sequence) definition

BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION and BATCH_STEP_EXECUTION all contain column
ending with _ID. These fields act as a primary key for respective tables. However, these keys are not
generated in the database but are rather generated in a separate sequence. After inserting one of
the domain objects in the database, the keys which assign the domain objects should be set in the
actual objects so that they can be uniquely identified in Java.
Sequences may not be supported depending on the database. In this case, a table is used instead of
each sequence.

2.3.2.4.3. Table definition

Explanation is given for each table item.

BATCH_JOB_INSTANCE

BATCH_JOB_INSTANCE table retains all the information related to JobInstance and is at top level of
the overall hierarchy.

BATCH_JOB_INSTANCE definition

Column name Description

JOB_INSTANCE_ID A primary key which is a unique ID identifying an instance.

VERSION Refer Version.

JOB_NAME Job name. A non-null value since it is necessary for identifying an
instance.

34 | 2.3. Spring Batch Architecture

Column name Description

JOB_KEY JobParameters which are serialised for uniquely identifying same
job as a different instance.
JobInstances with the same job name must contain different
JobParameters (in other words, varying JOB_KEY values).

BATCH_JOB_EXECUTION

BATCH_JOB_EXECUTION table retains all the information related to JobExecution object. When a
job is executed, new rows are always registered in the table with new JobExecution.

BATCH_JOB_EXECUTION definition

Column name Description

JOB_EXECUTION_ID Primary key that uniquely identifies this job execution.

VERSION Refer Version.

JOB_INSTANCE_ID Foreign key from BATCH_JOB_INSTANCE table which shows an
instance wherein the job execution belongs. Multiple executions are
likely to exist for each instance.

CREATE_TIME Time when the job execution was created.

START_TIME Time when the job execution was started.

END_TIME Indicates the time when the job execution was terminated
regardless of whether it was successful or failed.
Even though the job is not running currently, the column value is
empty which indicates there are several error types and the
framework was unable to perform last save operation.

STATUS A character string which indicates job execution status. It is a
character string output by BatchStatus enumeration object.

EXIT_CODE A character string which indicates an exit code of job execution.
When it is activated by CommandLineJobRunner, it can be
converted to a numeric value.

EXIT_MESSAGE A character string which explains job termination status in detail.
When a failure occurs, a character string that includes as many as
stack traces as possible is likely.

LAST_UPDATED Time when job execution of the record was last updated.

BATCH_JOB_EXECUTION_PARAMS

BATCH_JOB_EXECUTION_PARAMS table retains all the information related to JobParameters object.
It contains a pair of 0 or more keys passed to the job and the value and records the parameters by
which the job was executed.

BATCH_JOB_EXECUTION_PARAMS definition

2.3. Spring Batch Architecture | 35

Column name Description

JOB_EXECUTION_ID Foreign key from BATCH_JOB_EXECUTION table which executes this
job wherein the job parameter belongs.

TYPE_CD A character string which indicates that the data type is string, date,
long or double.

KEY_NAME Parameter key.

STRING_VAL Parameter value when data type is string.

DATE_VAL Parameter value when data type is date.

LONG_VAL Parameter value when data type is an integer.

DOUBLE_VAL Parameter value when data type is a real number.

IDENTIFYING A flag which indicates that the parameter is a value to identify that
the job instance is unique.

BATCH_JOB_EXECUTION_CONTEXT

BATCH_JOB_EXECUTION_CONTEXT table retains all the information related to ExecutionContext of
Job. It contains all the job level data required for execution of specific jobs. The data indicates the
status that must be fetched when the process is to be executed again after a job failure and enables
the failed job to start from the point where processing has stopped.

BATCH_JOB_EXECUTION_CONTEXT definition

Column name Description

JOB_EXECUTION_ID A foreign key from BATCH_JOB_EXECUTION table which indicates
job execution wherein ExecutionContext of Job belongs.

SHORT_CONTEXT A string representation of SERIALIZED_CONTEXT.

SERIALIZED_CONTEXT Overall serialised context.

BATCH_STEP_EXECUTION

BATCH_STEP_EXECUTION table retains all the information related to StepExecution object. This
table is very similar to BATCH_JOB_EXECUTION table in many ways. When each JobExecution is
created, at least one entry exists for each Step.

BATCH_STEP_EXECUTION definition

Column name Description

STEP_EXECUTION_ID Primary key that uniquely identifies the step execution.

VERSION Refer Version.

STEP_NAME Step name.

JOB_EXECUTION_ID Foreign key from BATCH_JOB_EXECUTION table which indicates
JobExecution wherein StepExecution belongs

36 | 2.3. Spring Batch Architecture

Column name Description

START_TIME Time when step execution was started.

END_TIME Indicates time when step execution ends regardless of whether it is
successful or failed.
Even though the job is not running currently, the column value is
empty which indicates there are several error types and the
framework was unable to perform last save operation.

STATUS A character string that represents status of step execution. It is a
string which outputs BatchStatus enumeration object.

COMMIT_COUNT Number of times a transaction is committed.

READ_COUNT Data records read by ItemReader.

FILTER_COUNT Data records filtered by ItemProcessor.

WRITE_COUNT Data records written by ItemWriter.

READ_SKIP_COUNT Data records skipped by ItemReader.

WRITE_SKIP_COUNT Data records skipped by ItemWriter.

PROCESS_SKIP_COUNT Data records skipped by ItemProcessor.

ROLLBACK_COUNT Number of times a transaction is rolled back.

EXIT_CODE A character string which indicates exit code for step execution.
When it is activated by using CommandLineJobRunner, it can be
changed to a numeric value.

EXIT_MESSAGE A character string which explains step termination status in detail.
When a failure occurs, a character string that includes as many as
stack traces as possible is likely.

LAST_UPDATED Time when the step execution of the record was last updated.

BATCH_STEP_EXECUTION_CONTEXT

BATCH_STEP_EXECUTION_CONTEXT table retains all the information related to ExecutionContext
of Step. It contains all the step level data required for execution of specific steps. The data indicates
the status that must be fetched when the process is to be executed again after a job failure and
enables the failed job to start from the point where processing has stopped.

BATCH_STEP_EXECUTION_CONTEXT definition

Column name Description

STEP_EXECUTION_ID Foreign key from BATCH_STEP_EXECUTION table which indicates
job execution wherein ExecutionContext of Step belongs.

SHORT_CONTEXT String representation of SERIALIZED_CONTEXT.

SERIALIZED_CONTEXT Overall serialized context.

2.3. Spring Batch Architecture | 37

2.3.2.4.4. DDL script

JAR file of Spring Batch Core contains a sample script which creates a relational table
corresponding to several database platforms. These scripts can be used as it is or additional index
or constraints can be changed as required.
The script is included in the package of org.springframework.batch.core and the file name is
configured by schema-*.sql. "*" is the short name for Target Database Platform..

2.3.2.5. Typical performance tuning points

Typical performance tuning points in Spring Batch are explained.

Adjustment of chunk size

Chunk size is increased to reduce overhead occurring due to resource output.
However, if chunk size is too large, it increases load on the resources resulting in deterioration
in the performance. Hence, chunk size must be adjusted to a moderate value.

Adjustment of fetch size

Fetch size (buffer size) for the resource is increased to reduce overhead occurring due to input
from resources.

Reading of a file efficiently

When BeanWrapperFieldSetMapper is used, a record can be mapped to the Bean only by
sequentially specifying Bean class and property name. However, it takes time to perform
complex operations internally. Processing time can be reduced by using dedicated
FieldSetMapper interface implementation which performs mapping.
For file I/O details, refer "File access".

Parallel processing, Multiple processing

Spring Batch supports parallel processing of Step execution and multiple processing by using
data distribution. Parallel processing or multiple processing can be performed and the
performance can be improved by running the processes in parallel. However, if number of
parallel processes and multiple processes is too large, load on the resources increases resulting
in deterioration of performance. Hence, size must be adjusted to a moderate value.
For details of parallel and multiple processing, refer parallel processing and multiple processing.

Reviewing distributed processing

Spring Batch also supports distributed processing across multiple machines. Guidelines are
same as parallel and multiple processing.
Distributed processing will not be explained in this guideline since the basic design and
operational design are complex.

38 | 2.3. Spring Batch Architecture

2.4. Architecture of TERASOLUNA Batch Framework
for Java (5.x)

2.4.1. Overview

Overall architecture of TERASOLUNA Batch Framework for Java (5.x) is explained.

In TERASOLUNA Batch Framework for Java (5.x), as described in "General batch processing
system", it is implemented by using OSS combination focused on Spring Batch.

The configuration schematic diagram of TERASOLUNA Batch Framework for Java (5.x) including
hierarchy architecture of Spring Batch is shown below.

Configuration schematic diagram of TERASOLUNA Batch Framework for Java (5.x)

Description of hierarchy architecture of Spring Batch

Business Application

All job definitions and business logic written by developers.

spring batch core

A core runtime class required to start and control batch jobs offered by Spring Batch.

spring batch infrastructure

Implementation of general ItemReader/ItemProcessor/ItemWriter offered by Spring Batch which
are used by developers and core framework itself.

2.4.2. Structural elements of job

The configuration schematic diagram of jobs is shown below in order to explain structural
elements of the job.

2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x) | 39

Configuration schematic diagram of job

This section also explains about guidelines which should be finely configured for job and step.

2.4.2.1. Job

A job is an entity that encapsulates entire batch process and is a container for storing steps.
A job can consist of one or more steps.

A job is defined in the Bean definition file by using XML. Multiple jobs can be defined in the job
definition file, however, managing jobs tend to become complex.

Hence, TERASOLUNA Batch Framework for Java (5.x) uses following guidelines.

 1 job = 1 job definition file

2.4.2.2. Step

Step defines information required for controlling a batch process. A chunk model and a tasklet
model can be defined in the step.

Chunk model

• It is configured by ItemReader, ItemProcessor and ItemWriter.

Tasklet model

• It is configured only by Tasklet.

As given in "Rules and precautions to be considered in batch processing", it is necessary to simplify
as much as possible and avoid complex logical structures in a single batch process.

Hence, TERASOLUNA Batch Framework for Java (5.x) uses following guidelines.

 1 step = 1 batch process = 1 business logic

40 | 2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x)

Distribution of business logic in chunk model

If a single business logic is complex and large-scale, the business logic is divided
into units. As clear from the schematic diagram, since only one ItemProcessor can
be set in 1 step, it looks like the division of business logic is not possible. However,
CompositeItemProcessor is an ItemProcessor that consists of multiple
ItemProcessors, and the business logic can be divided and executed by using this
implementation.

2.4.3. How to implement Step

2.4.3.1. Chunk model

Definition of chunk model and purpose of use are explained.

Definition

ItemReader, ItemProcessor and ItemWriter implementation and number of chunks are set in
ChunkOrientedTasklet. Respective roles are explained.

• ChunkOrientedTasklet…Call ItemReader/ItemProcessor and create a chunk. Pass created
chunk to ItemWriter.

• ItemReader…Read input data.

• ItemProcessor…Process read data.

• ItemWriter…Output processed data in chunk units.

For overview of chunk model, refer "Chunk model".

How to set a job in chunk model

<batch:job id="exampleJob">
 <batch:step id="exampleStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

Purpose of use

Since it handles a certain amount of data collectively, it is used while handling a large amount of
data.

2.4.3.2. Tasklet model

Definition of tasklet model and purpose of use are explained.

2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x) | 41

Definition

Only Tasklet implementation is set.
For overview of Tasklet model, refer "Tasklet model".

How to set a job in Tasklet model

<batch:job id="exampleJob">
 <batch:step id="exampleStep">
 <batch:tasklet ref="myTasklet">
 </batch:step>
</batch:job>

Purpose of use

It can be used for executing a process which is not associated with I/O like execution of system
commands etc.
Further, it can also be used while committing the data in batches.

2.4.3.3. Functional difference between chunk model and Tasklet model

Explanation is given for the functional difference between chunk model and Tasklet model. Here,
only outline is given. Refer to the section of each function for details.

List of functional differences

Function Chunk model Tasklet model

Structural
elements

Configured by
ItemReader/ItemProcessor/ItemWriter
/ChunkOrientedTasklet.

Configured only by Tasklet.

Transaction A transaction is generated in a chunk
unit.

Processed in 1 transaction.

Recommended
reprocessing
method

Re-run and re-start can be used. As a rule, only re-run is used.

Exception
handling

Handling process becomes easier by
using a listener. Individual
implementation is also possible.

Individual implementation is
required.

2.4.4. Running a job method

Running a job method is explained. This contains following.

• Synchronous execution method

• Asynchronous execution method

Respective methods are explained.

42 | 2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x)

2.4.4.1. Synchronous execution method

Synchronous execution method is an execution method wherein the control is not given back to the
boot source from job start to job completion.

A schematic diagram which starts a job from job scheduler is shown.

Schematic diagram for synchronous execution

1. Start a shell script to run a job from job scheduler.
Job scheduler waits until the exit code (numeric value) is returned.

2. Start CommandLineJobRunner to run a job from shell script.
Shell script waits until CommandLineJobRunner returns an exit code (numeric value).

3. CommandLineJobRunner runs a job. Job returns an exit code (string) to CommandLineJobRunner after
processing is completed.
CommandLineJobRunner converts exit code (string) returned from the job to exit code (numeric
value) and returns it to the shell script.

2.4.4.2. Asynchronous execution method

Asynchronous execution method is an execution method wherein the control is given back to boot
source immediately after running a job, by executing a job on a different execution base than boot
source (a separate thread etc). In this method, it is necessary to fetch job execution results by a
means different from that of running a job.

Following 2 methods are explained in TERASOLUNA Batch Framework for Java (5.x).

• Asynchronous execution method (DB polling)

• Asynchronous execution method (Web container)

Other asynchronous execution methods

Asynchronous execution can also be performed by using messages like MQ,
however since the job execution points are identical, description will be omitted in
TERASOLUNA Batch Framework for Java (5.x).

2.4.4.2.1. Asynchronous execution method (DB polling)

"Asynchronous execution (DB polling)" is a method wherein a job execution request is registered in
the database, polling of the request is done and job is executed.

TERASOLUNA Batch Framework for Java (5.x) supports DB polling function. The schematic diagram
of start by DB polling offered is shown.

2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x) | 43

DB polling schematic diagram

1. User registers a job request to the database.

2. DB polling function periodically monitors the registration of the job request and executes the
corresponding job when the registration is detected.

◦ Run the job from SimpleJobOperator and receive JobExecutionId after completion of the job.

◦ JobExecutionId is an ID which uniquely identifies job execution and execution results are
browsed from JobRepository by using this ID.

◦ Job execution results are registered in JobRepository by using Spring Batch system.

◦ DB polling is itself executed asynchronously.

3. DB polling function updates JobExecutionId returned from SimpleJobOperator and the job
request that started the status.

4. Job process progress and results are referred separately by using JobExecutionId.

2.4.4.2.2. Asynchronous execution method (Web container)

"Asynchronous execution (Web container)" is a method wherein a job is executed asynchronously
using the request sent to web application on the web container as a trigger.* A Web application can
return a response immediately after starting without waiting for the job to end.

Web container schematic diagram

1. Send a request from a client to Web application.

2. Web application asynchronously executes the job requested from a request.

◦ Receive `JobExecutionId immediately after starting a job from SimpleJobOperator.

◦ Job execution results are registered in JobRepository by using Spring Batch system.

3. Web application returns a response to the client without waiting for the job to end.

4. Job process progress and results are browsed separately by using JobExecutionId.

Further, it can also be linked with Web application configured by TERASOLUNA Server Framework
for Java (5.x).

44 | 2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x)

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/

2.4.5. Points to be considered while using

Points to be considered while using TERASOLUNA Batch Framework for Java (5.x) are shown.

Running a job method

Synchronous execution method

It is used when job is run as per schedule and batch processing is carried out by combining
multiple jobs.

Asynchronous execution method (DB polling)

It is used in delayed processing, continuous execution of jobs with a short processing time,
aggregation of large quantity of jobs.

Asynchronous execution method (Web container)

Similar to DB polling, however it is used when an immediate action is required for the
startup.

Implementation method

Chunk model

It is used when a large quantity of data is to be processed efficiently.

Tasklet model

It is used for simple processing, processing that is difficult to standardize and for the
processes wherein data is to be processed collectively.

2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x) | 45

Chapter 3. Methodology of application
development

3.1. Development of batch application
The development of batch application is explained in the following flow.

• What is blank project

• Creation of project

• Project structure

• Flow of development

• Build of application

3.1.1. What is blank project

Blank project is the template of development project wherein various settings are made in advance
such as Spring Batch, MyBatis3 and it is the starting point of application development.
In this guideline, a blank project with a single project structure is provided.
Refer to Project structure for the explanation of structure.

Difference from TERASOLUNA Server 5.x

Multi-project structure is recommended forTERASOLUNA Server 5.x. The reason is
mainly to enjoy the following merits.

• Makes the environmental differences easier to absorb

• Makes separation of business logic and presentation easier

However, in this guideline, a single project structure is provided unlike
TERASOLUNA Server 5.x.

This point should be considered for batch application also, however, by providing
single project structure, accessing the resources related to one job is given priority.
In case of batch application, one of the reason is that there are many cases when
environment differences can be switched by property file or environment
variables.

3.1.2. Creation of project

How to create a project using archetype:generate of Maven Archetype Plugin is explained.

46 | 3.1. Development of batch application

Regarding prerequisites of creating environment

Prerequisites are explained below.

• Java SE Development Kit 8

• Apache Maven 3.x

◦ Internet should be connected

◦ When connecting to the Internet via proxy, Maven proxy setting should be
done

• IDE

◦ Spring Tool Suite / Eclipse etc.

Execute the following commands in the directory where project is created.

Command prompt(Windows)

C:\xxx> mvn archetype:generate ^
 -DarchetypeGroupId=org.terasoluna.batch ^
 -DarchetypeArtifactId=terasoluna-batch-archetype ^
 -DarchetypeVersion=5.1.1.RELEASE

Bash(Unix, Linux, …)

$ mvn archetype:generate \
 -DarchetypeGroupId=org.terasoluna.batch \
 -DarchetypeArtifactId=terasoluna-batch-archetype \
 -DarchetypeVersion=5.1.1.RELEASE

Next, set the following to Interactive mode in accordance with the status of the user.

• groupId

• artifactId

• version

• package

An example of setting and executing the value is shown below.

Explanation of each element of blank project

Item name Setting example

groupId com.example.batch

artifactId batch

version 1.0.0-SNAPSHOT

package com.example.batch

3.1. Development of batch application | 47

Execution example at command prompt

C:\xxx>mvn archetype:generate ^
More? -DarchetypeGroupId=org.terasoluna.batch ^
More? -DarchetypeArtifactId=terasoluna-batch-archetype ^
More? -DarchetypeVersion=5.1.1.RELEASE
[INFO] Scanning for projects…​
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --

(.. omitted)

Define value for property 'groupId': com.example.batch
Define value for property 'artifactId': batch
Define value for property 'version' 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package' com.example.batch: :
Confirm properties configuration:
groupId: com.example.batch
artifactId: batch
version: 1.0.0-SNAPSHOT
package: com.example.batch
 Y: : y
[INFO] --
[INFO] Using following parameters for creating project from Archetype: terasolua-
batch-archetype:5.1.1.RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: com.example.batch
[INFO] Parameter: artifactId, Value: batch
[INFO] Parameter: version, Value: 1.0.0-SNAPSHOT
[INFO] Parameter: package, Value: com.example.batch
[INFO] Parameter: packageInPathFormat, Value: com/example/batch
[INFO] Parameter: package, Value: com.example.batch
[INFO] Parameter: version, Value: 1.0.0-SNAPSHOT
[INFO] Parameter: groupId, Value: com.example.batch
[INFO] Parameter: artifactId, Value: batch
[INFO] Project created from Archetype in dir: C:\xxx\batch
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 36.952 s
[INFO] Finished at: 2017-07-25T14:23:42+09:00
[INFO] Final Memory: 14M/129M
[INFO] --

48 | 3.1. Development of batch application

Execution example at Bash

$ mvn archetype:generate \
> -DarchetypeGroupId=org.terasoluna.batch \
> -DarchetypeArtifactId=terasoluna-batch-archetype \
> -DarchetypeVersion=5.1.1.RELEASE
[INFO] Scanning for projects…​
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --

(.. omitted)

Define value for property 'groupId': com.example.batch
Define value for property 'artifactId': batch
Define value for property 'version' 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package' com.example.batch: :
Confirm properties configuration:
groupId: com.example.batch
artifactId: batch
version: 1.0.0-SNAPSHOT
package: com.example.batch
 Y: : y
[INFO] --
[INFO] Using following parameters for creating project from Archetype: terasoluna-
batch-archetype:5.1.1.RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: com.example.batch
[INFO] Parameter: artifactId, Value: batch
[INFO] Parameter: version, Value: 1.0.0-SNAPSHOT
[INFO] Parameter: package, Value: com.example.batch
[INFO] Parameter: packageInPathFormat, Value: com/example/batch
[INFO] Parameter: package, Value: com.example.batch
[INFO] Parameter: version, Value: 1.0.0-SNAPSHOT
[INFO] Parameter: groupId, Value: com.example.batch
[INFO] Parameter: artifactId, Value: batch
[INFO] Project created from Archetype in dir: C:\xxx\batch
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 01:19 min
[INFO] Finished at: 2017-07-25T14:20:09+09:00
[INFO] Final Memory: 17M/201M
[INFO] --

The creation of project is completed by the above execution.

It can be confirmed whether the project was created properly by the following points.

3.1. Development of batch application | 49

Execution at command prompt (Verify that it was created correctly)

C:\xxx>mvn clean dependency:copy-dependencies -DoutputDirectory=lib package
C:\xxx>java -cp "lib/*;target/*" ^
org.springframework.batch.core.launch.support.CommandLineJobRunner ^
META-INF/jobs/job01.xml job01

Execution at Bash (Verify that it was created correctly)

$ mvn clean dependency:copy-dependencies -DoutputDirectory=lib package
$ java -cp 'lib/*:target/*' \
org.springframework.batch.core.launch.support.CommandLineJobRunner \
META-INF/jobs/job01.xml job01

It is created properly if the following output is obtained.

50 | 3.1. Development of batch application

Output example at command prompt

C:\xxx>mvn clean dependency:copy-dependencies -DoutputDirectory=lib package
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building TERASOLUNA Batch Framework for Java (5.x) Blank Project 1.0.0-SNAPSHOT
[INFO] --

(.. omitted)

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 11.007 s
[INFO] Finished at: 2017-07-25T14:24:36+09:00
[INFO] Final Memory: 23M/165M
[INFO] --

C:\xxx>java -cp "lib/*;target/*" ^
More? org.springframework.batch.core.launch.support.CommandLineJobRunner ^
More? META-INF/jobs/job01.xml job01

(.. omitted)

[2017/07/25 14:25:22] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=job01]] launched with the following parameters: [{jsr_batch_run_id=1}]
[2017/07/25 14:25:22] [main] [o.s.b.c.j.SimpleStepHandler] [INFO] Executing step:
[job01.step01]
[2017/07/25 14:25:23] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=job01]] completed with the following parameters: [{jsr_batch_run_id=1}] and the
following status: [COMPLETED]
[2017/07/25 14:25:23] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@62043840: startup
date [Tue Jul 25 14:25:20 JST 2017]; root of context hierarchy

3.1. Development of batch application | 51

Output example at Bash

$ mvn clean dependency:copy-dependencies -DoutputDirectory=lib package
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building TERASOLUNA Batch Framework for Java (5.x) Blank Project 1.0.0-SNAPSHOT
[INFO] --

(.. omitted)

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 10.827 s
[INFO] Finished at: 2017-07-25T14:21:19+09:00
[INFO] Final Memory: 27M/276M
[INFO] --

$ java -cp 'lib/*:target/*' \
> org.springframework.batch.core.launch.support.CommandLineJobRunner \
> META-INF/jobs/job01.xml job01
[2017/07/25 14:21:49] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO]
Refreshing
org.springframework.context.support.ClassPathXmlApplicationContext@62043840: startup
date [Tue Jul 25 14:21:49 JST 2017]; root of context hierarchy

(.. omitted)

[2017/07/25 14:21:52] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=job01]] launched with the following parameters: [{jsr_batch_run_id=1}]
[2017/07/25 14:21:52] [main] [o.s.b.c.j.SimpleStepHandler] [INFO] Executing step:
[job01.step01]
[2017/07/25 14:21:52] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=job01]] completed with the following parameters: [{jsr_batch_run_id=1}] and the
following status: [COMPLETED]
[2017/07/25 14:21:52] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@62043840: startup
date [Tue Jul 25 14:21:49 JST 2017]; root of context hierarchy

3.1.3. Project structure

Project structure that was created above, is explained. Project structure should be made by
considering the following points.

• Implement the job which does not depend on the startup method

• Save the efforts of performing various settings such as Spring Batch, MyBatis

• Make the environment dependent switching easy

52 | 3.1. Development of batch application

The structure is shown and each element is explained below.
(It is explained based on the output at the time of executing the above mvn archetype:generate to
easily understand.)

Directory configuration of project

Explanation of each element of blank project

Sr. No. Explanation

(1) root package that stores various classes of the entire batch application.

(2) Package that stores various classes related to job01.
It stores DTO, implementation of Tasklet and Processor, Mapper interface of MyBatis3.
Since there are no restrictions on the storage method in this guideline, please refer to
this as an example.

You can customize it with reference to default state, however, consider making it easier
to judge the resources specific to the job.

(3) Configuration file of the entire batch application.
In the default state, the settings related to database connection and asynchronous
execution are set up. You can add by referring default.

(4) Configuration file of Logback(log output).

3.1. Development of batch application | 53

Sr. No. Explanation

(5) Configuration file that defines messages to be displayed when an error occurs during the
input check using BeanValidation.
In the initial state, all the default messages of BeanValidation and its implementation
HibernateValidator are defined and all are commented out.
In this state since default messages are used, modify the commented message to any
message only when you want to customize it.

(6) Mapper XML file that pairs with Mapper interface of MyBatis3.

(7) Property file that defines messages used mainly for log output.

(8) Directory that stores job-specific Bean definition file.
The hierarchical structure can be configured according to the number of jobs.

(9) Directory that stores Bean definition file related to the entire batch application.
It is set to start a job regardless of default setting of Spring Batch or MyBatis or start
trigger such as synchronous / asynchronous.

(10) Bean definition file that describes settings related to asynchronous execution (DB
polling) function.

(11) Bean definition file to reduce various settings by importing in a job-specific Bean
definition file.
By importing this, the job can absorb the difference in the Bean definition by the start
trigger.

(12) Bean definition file for setting Spring Batch behavior and common jobs.

Relation figure of each file is shown below.

Relation figure of each file

3.1.4. Flow of development

Explain the flow of developing jobs.
Here, we will focus on understanding the general flow and not the detailed explanation.

3.1.4.1. Import to IDE

Since the generated project is as per the project structure of Maven, import as Maven project using

54 | 3.1. Development of batch application

various IDEs.
Detailed procedures are omitted.

3.1.4.2. Setting of entire application

Customize as follows depending on user status.

• Project information of pom.xml

• Database related settings

How to customize settings other than these by individual functions is explained.

3.1.4.2.1. Project information of pom.xml

As the following information is set with temporary values in the POM of the project, values should
be set as per the status.

• Project name(name element)

• Project description(description element)

• Project URL(url element)

• Project inception year(inceptionYear element)

• Project license(licenses element)

• Project organization(organization element)

3.1.4.2.2. Database related settings

Database related settings are at many places, so each place should be modified.

pom.xml

<!-- (1) -->
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <scope>runtime</scope>
</dependency>

3.1. Development of batch application | 55

batch-application.properties

(2)
Admin DataSource settings.
admin.jdbc.driver=org.h2.Driver
admin.jdbc.url=jdbc:h2:mem:batch-admin;DB_CLOSE_DELAY=-1
admin.jdbc.username=sa
admin.jdbc.password=

(2)
Job DataSource settings.
#jdbc.driver=org.postgresql.Driver
#jdbc.url=jdbc:postgresql://localhost:5432/postgres
#jdbc.username=postgres
#jdbc.password=postgres
jdbc.driver=org.h2.Driver
jdbc.url=jdbc:h2:mem:batch;DB_CLOSE_DELAY=-1
jdbc.username=sa
jdbc.password=

(3)
Spring Batch schema initialize.
data-source.initialize.enabled=true
spring-batch.schema.script=classpath:org/springframework/batch/core/schema-h2.sql
terasoluna-batch.commit.script=classpath:org/terasoluna/batch/async/db/schema-
commit.sql

56 | 3.1. Development of batch application

META-INF/spring/launch-context.xml

<!-- (3) -->
<jdbc:initialize-database data-source="adminDataSource"
 enabled="${data-source.initialize.enabled:false}"
 ignore-failures="ALL">
 <jdbc:script location="${spring-batch.schema.script}" />
 <jdbc:script location="${terasoluna-batch.commit.script}" />
</jdbc:initialize-database>

<!-- (4) -->
<bean id="adminDataSource" class="org.apache.commons.dbcp2.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${admin.jdbc.driver}"
 p:url="${admin.jdbc.url}"
 p:username="${admin.jdbc.username}"
 p:password="${admin.jdbc.password}"
 p:maxTotal="10"
 p:minIdle="1"
 p:maxWaitMillis="5000"
 p:defaultAutoCommit="false"/>

<!-- (4) -->
<bean id="jobDataSource" class="org.apache.commons.dbcp2.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${jdbc.driver}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"
 p:maxTotal="10"
 p:minIdle="1"
 p:maxWaitMillis="5000"
 p:defaultAutoCommit="false" />

<!-- (5) -->
<bean id="jobSqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"
 p:dataSource-ref="jobDataSource" >
 <property name="configuration">
 <bean class="org.apache.ibatis.session.Configuration"
 p:localCacheScope="STATEMENT"
 p:lazyLoadingEnabled="true"
 p:aggressiveLazyLoading="false"
 p:defaultFetchSize="1000"
 p:defaultExecutorType="REUSE" />
 </property>
</bean>

3.1. Development of batch application | 57

META-INF/spring/async-batch-daemon.xml

<!-- (5) -->
<bean id="adminSqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"
 p:dataSource-ref="adminDataSource" >
 <property name="configuration">
 <bean class="org.apache.ibatis.session.Configuration"
 p:localCacheScope="STATEMENT"
 p:lazyLoadingEnabled="true"
 p:aggressiveLazyLoading="false"
 p:defaultFetchSize="1000"
 p:defaultExecutorType="REUSE" />
 </property>
</bean>

Each element in database related settings is explained

Sr. No. Explanation

(1) In pom.xml, define dependency relation of JDBC driver for connecting to the database to
be used.
In the default state, H2 Database(in-memory database) and PostgreSQL are set, however
add/delete should be performed whenever required.

(2) Set JDBC driver connection.
- admin.jdbc.xxx is used by Spring Batch and TERASOLUNA Batch 5.x
- jdbc.xxx~ is used in individual job

(3) Define whether or not to execute the initialization of database used by Spring Batch or
TERASOLUNA Batch 5.x, and the script to be used.
Since Spring Batch accesses JobRepository and TERASOLUNA Batch 5.x accesses job
request table in the asynchronous execution(DB Polling), database is mandatory.
Whether or not to enable it should be based on the following.
- Enable it when H2 Database is to be used. If disabled, JobRepository or job request
table cannot be accessed and an error occurs.
- When not using H2 Database, disable it to prevent accidents.

(4) Set datasource.
Tune the number of connections as necessary.

(5) Set MyBatis behavior.
Tune fetch size as necessary.

3.1.5. Creation of job

Refer to the following for how to create a job.

• Creation of chunk model job

• Creation of tasklet model job

58 | 3.1. Development of batch application

3.1.6. Build and execution of project

Build and execution of project is explained.

3.1.6.1. Build of application

Move to the root directory of the project and execute the following command.

Build(Windows/Bash)

$ mvn clean dependency:copy-dependencies -DoutputDirectory=lib package

The following is generated by this.

• <Root directory>/target/[artifactId]-[version].jar

◦ Jar of the created batch application is generated

• <Root directory>/lib/(Dependent Jar file)

◦ A set of dependent Jar files is copied

When deploying to the test environment and the commercial environment, these Jar files can be
copied to an arbitrary directory.

3.1.6.2. Switching of configuration file according to the environment

In the pom.xml of the project, the following Profile is set as the default value.

3.1. Development of batch application | 59

Profiles settings of pom.xml

<profiles>
 <!-- Including application properties and log settings into package. (default) -->
 <profile>
 <id>IncludeSettings</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <exclude-property/>
 <exclude-log/>
 </properties>
 </profile>

 <!-- Excluding application properties and log settings into package. -->
 <profile>
 <id>ExcludeSettings</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 </activation>
 <properties>
 <exclude-property>batch-application.properties</exclude-property>
 <exclude-log>logback.xml</exclude-log>
 </properties>
 </profile>
</profiles>

Here, Whether to include environment dependent configuration file is switched. By utilizing this
setting, it is possible to absorb the environmental difference by separately placing the configuration
file at the time of environment deployment. Moreover, by applying this, it is possible to change the
configuration file to be included in Jar in the test environment and the commercial environment.
An example is shown below.

60 | 3.1. Development of batch application

Description example of pom.xml for switching configuration file for each environment

<build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 <resource>

<directory>${project.root.basedir}/${project.config.resource.directory.rdbms}</directo
ry>
 </resource>
 </resources>
</build>

<profiles>
 <profile>
 <id>postgresql9-local</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <dependencies>
 <dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <scope>runtime</scope>
 </dependency>
 </dependencies>
 <properties>
 <project.config.resource.directory.rdbms>
config/rdbms/postgresql9/local</project.config.resource.directory.rdbms>
 </properties>
 </profile>
 <profile>
 <id>postgresql9-it</id>
 <dependencies>
 <dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <scope>runtime</scope>
 </dependency>
 </dependencies>
 <properties>
 <project.config.resource.directory.rdbms>
config/rdbms/postgresql9/it</project.config.resource.directory.rdbms>
 </properties>
 </profile>
</profiles>

Maven Profile can be activated at the time of executing command as follows.

3.1. Development of batch application | 61

Multiple Profiles can be activated. Use effectively whenever required.

Example of activating Maven Profile

$ mvn -P profile-1,profile-2

3.1.6.2.1. Execution of application

An example of executing the job based on the above-mentioned build result, is shown.
[artifactId] and [version] should be changed according to the user as set by Creation of project.

Command prompt(Windows)

C:\xxx> java -cp "target\[artifactId]-[version].jar;lib*" ^
org.springframework.batch.core.launch.support.CommandLineJobRunner ^
META-INF/jobs/job01.xml job01

Bash(Unix, Linux, …)

$ java -cp 'target/[artifactId]-[version].jar:lib/*' \
org.springframework.batch.core.launch.support.CommandLineJobRunner \
META-INF/jobs/job01.xml job01

62 | 3.1. Development of batch application

Necessity to handle exit code returned by java command

In the actual system, it is common to start by inserting shell script for starting java
rather than issuing a java command directly when issuing a job from the job
scheduler.

This is for setting the environment variables before starting the java command
and for handling the exit code of the java command. It is recommended that
Handling of the exit code of the java command should always be done for the
following reasons.

• The normal exit code of the java command is 0 and abnormal is 1. The job
scheduler judges the success / failure of the job within the range of the exit
code. Depending on the settings of the job scheduler, it judges as 'Normal end'
irrespective of the fact that the java commandended abnormally.

• The exit code that can be handled by OS and job scheduler has finite range.

◦ It is important to define the range of the exit code to be used by the user
according to the specifications of the OS and job scheduler.

◦ Generally, it is in the range of 0 to 255 which is defined by the POSIX
standards.

▪ In {batch 5 _ shortname}, it is set to return the normal exit code as 0 or
otherwise, 255.

An example of handling exit code is shown below.

Example of handling exit code

#!/bin/bash

..omitted.

java -cp ...
RETURN_CODE=$?
if [$RETURN_CODE = 1]; then
 return 255
else
 return $RETURN_CODE
fi

3.1. Development of batch application | 63

3.2. Creation of chunk model job

3.2.1. Overview

How to create chunk model job is explained. Refer to Spring Batch architecture for the architecture
of chunk model.

The components of chunk model job are explained here.

3.2.1.1. Components

The components of chunk model job are shown below. A single job is implemented by combining
these components in the bean definition.

Components of chunk model job

Sr.
No.

Name Role Mandato
ry
settings

Mandato
ry
impleme
ntation

1 ItemReader Interface to fetch data from various resources.
Since implementation for flat files and database is
provided by Spring Batch,
there is no need for the user to create it.

2 ItemProcessor Interface for processing data from input to output.
The user implements this interface whenever
required and implements business logic.

3 ItemWriter Interface for the output of data to various
resources.
An interface paired with ItemReader.
Since implementation for flat files and database is
provided by Spring Batch,
there is no need for the user to create it.

The points in this table are as follows.

• If the data is to be only transferred from input resource to output resource in a simple way, it
can be implemented only by setting.

• ItemProcessor should be implemented whenever required.

Hereafter, how to implement the job using these components, is explained.

3.2.2. How to use

How to implement chunk model job is explained in the following order here.

• Job configuration

• Implementation of components

64 | 3.2. Creation of chunk model job

3.2.2.1. Job configuration

Define a way to combine the elements that constitutes chunk model job in the Bean definition file.
An example is shown below and the relation between components is explained.

Example of Bean definition file (Chunk model)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- (1) -->
 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <!-- (2) -->
 <context:component-scan
 base-package="org.terasoluna.batch.functionaltest.app.common" />

 <!-- (3) -->
 <mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository.mst"
 factory-ref="jobSqlSessionFactory"/>

 <!-- (4) -->
 <bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader" scope="step"

p:queryId="org.terasoluna.batch.functionaltest.app.repository.mst.CustomerRepository.f
indAll"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

 <!-- (5) -->
 <!-- Item Processor -->
 <!-- Item Processor in order that based on the Bean defined by the annotations,
not defined here -->

 <!-- (6) -->
 <bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter"

3.2. Creation of chunk model job | 65

 scope="step"
 p:resource="file:#{jobParameters['outputFile']}">
 <property name="lineAggregator">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"

p:names="customerId,customerName,customerAddress,customerTel,chargeBranchId"/>
 </property>
 </bean>
 </property>
 </bean>

 <!-- (7) -->
 <batch:job id="jobCustomerList01" job-repository="jobRepository"> <!-- (8) -->
 <batch:step id="jobCustomerList01.step01"> <!-- (9) -->
 <batch:tasklet transaction-manager="jobTransactionManager"> <!-- (10) -->
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="10" /> <!-- (11) -->
 </batch:tasklet>
 </batch:step>
 </batch:job>
</beans>

Configuration of ItemProcessor implementation class

@Component("processor") // (5)
public class CustomerProcessor implements ItemProcessor<Customer, Customer> {
 // omitted.
}

Sr. No. Explanation

(1) Import the settings to always read the required Bean definition when using
TERASOLUNA Batch 5.x.

(2) Set base package for component scan.
 If annotation based Bean definition is not performed using component scan and Bean
dependency is to be resolved using annotation, <context:annotation-config/> tag should
be defined.

(3) MyBatis-Spring settings.
For the details of MyBatis-Spring settings, refer Database access

(4) ItemReader configuration.
For the details of ItemReader, refer to Database access and File access.

66 | 3.2. Creation of chunk model job

Sr. No. Explanation

(5) ItemProcessor can be defined by annotation in (2), so there is no need to define in the
Bean definition file.

(6) ItemWriter configuration.
For the details of ItemWriter, refer to Database access and File access.

(7) Job configuration.
id attribute must be unique for all the jobs included in 1 batch application.

(8) JobRepository configuration.
The value set in the job-repository attribute should be fixed to jobRepository unless
there is a special reason.
This will allow all the jobs to be managed by one JobRepository. The bean definition of
jobRepository is resolved by (1).

(9) Step configuration.
Although it is not necessary to use a unique id attribute for all the jobs in one batch
application, a unique id is used for enabling easy tracking at the time of failure
occurrence.
A format of [step+serial number] is added to id attribute specified in (7) unless there is a
special reason to use a different format.

(10) Tasklet configuration.
The value set in the transaction-manager attribute should be fixed to
jobTransactionManager unless there is a special reason.
This will allow the transaction to be managed for each commit-interval of (11). For
details, refer to Transaction control.
Resolve Bean definition of jobTransactionManager by (1).

(11) Chunk model job configuration.
Specify Bean ID of ItemReader and ItemWriter defined in the previous section, in
respective reader and writer attributes.
Specify Bean ID of implementation class of ItemProcessor, in processor attribute.
Set input data count per chunk in commit-interval attribute.

Tuning of commit-interval

commit-interval is the performance tuning point in chunk model job.

In the above example, it is assumed to be 10, but the appropriate number varies
depending on available machine resources and job characteristics. In case of a job
that processes data by accessing multiple resources, the process throughput may
reach to 100 records from 10 records. If input/output resource is of 1:1
correspondence and there is a job of transferring data, then the process
throughput may increase to 5000 records or even to 10000 records.

Temporarily set commit-interval to 100 records at the time of implementing the
job, and then perform tuning of each job as per the result of performance
measurement performed later.

3.2. Creation of chunk model job | 67

3.2.2.2. Implementation of components

Here, mainly how to implement ItemProcessor is explained.

Refer to the following for other components.

• ItemReader, ItemWriter

◦ Database access、 File access

• Listener

◦ Listener

3.2.2.2.1. Implementation of ItemProcessor

How to implement ItemProcessor is explained.

ItemProcessor is responsible for creating one record of data for the output resource based on the
one record of data fetched from the input resource as shown in the interface below. In other
words, ItemProcessor is where business logic for one record of data is implemented.

ItemProcessor interface

public interface ItemProcessor<I, O> {
 O process(I item) throws Exception;
}

The interface indicating I and O can be of same type or of different type as shown below. Same type
means modifying input data partially. Different type means to generate output data based on the
input data.

Example of implementation of ItemProcessor(Input/Output is of same type)

@Component
public class AmountUpdateItemProcessor implements
 ItemProcessor<SalesPlanDetail, SalesPlanDetail> {

 @Override
 public SalesPlanDetail process(SalesPlanDetail item) throws Exception {
 item.setAmount(new BigDecimal("1000"));
 return item;
 }
}

68 | 3.2. Creation of chunk model job

Example of implementation of ItemProcessor(Input/Output is of different type)

@Component
public class UpdateItemFromDBProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPlanDetail> {

 @Inject
 CustomerRepository customerRepository;

 @Override
 public SalesPlanDetail process(SalesPerformanceDetail readItem) throws Exception {
 Customer customer = customerRepository.findOne(readItem.getCustomerId());

 SalesPlanDetail writeItem = new SalesPlanDetail();
 writeItem.setBranchId(customer.getChargeBranchId());
 writeItem.setYear(readItem.getYear());
 writeItem.setMonth(readItem.getMonth());
 writeItem.setCustomerId(readItem.getCustomerId());
 writeItem.setAmount(readItem.getAmount());
 return writeItem;
 }
}

Explanation of return of null from ItemProcessor

Return of null from ItemProcessor means the data is not passed to the subsequent
process (Writer). In other words, the data is filtered. This can be effectively used to
validate the input data. For detail, refer to Input check.

To increase process throughput of ItemProcessor

As shown in the previous implementation example, the implementation class of
ItemProcessor should access resources such as database and files. Since
ItemProcessor is executed for each record of input data, even if there is small I/O,
large I/O occurs in the entire job, so it is important to suppress I/O as much as
possible for increasing process throughput.

One method is to store the required data in memory in advance by utilizing
Listener to be mentioned later and implement most of the processing in
ItemProcessor so that it completes between CPU/ memory. However, since it
consumes a large amount of memory per job, its not that anything can be stored in
the memory. The data to be stored in memory based on I/O frequency and data
size should be studied.

This point is introduced even in Input/Output of data.

3.2. Creation of chunk model job | 69

Use multiple ItemProcessors at the same time

If a general ItemProcessor is provided to apply to each job, it can be implemented
by using CompositeItemProcessor provided by Spring Batch and linking it.

Linking of multiple ItemProcessor by CompositeItemProcessor

<bean id="processor"

class="org.springframework.batch.item.support.CompositeItemProcessor">
 <property name="delegates">
 <list>
 <ref bean="commonItemProcessor"/>
 <ref bean="businessLogicItemProcessor"/>
 </list>
 </property>
</bean>

Note that it is processed in the order specified in the delegates attribute.

70 | 3.2. Creation of chunk model job

3.3. Creation of tasklet model job

3.3.1. Overview

How to create a tasklet model job is explained. Refer to Spring Batch architecture for the
architecture of tasklet model.

3.3.1.1. Components

Tasklet model job does not register multiple components. It only implements
org.springframework.batch.core.step.tasklet.Tasklet and sets it in Bean definition. ItemReader and
ItemWriter which are components of the chunk model can also be used as constructive means for
implementation.

3.3.2. HowToUse

How to implement tasklet model job is explained in the following order here.

• Job configuration

• Implementation of tasklet

3.3.2.1. Job configuration

Define tasklet model job in Bean definition file. An example is shown below.

3.3. Creation of tasklet model job | 71

Example of Bean definition file (Tasklet model)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <!-- (1) -->
 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <!-- (2) -->
 <context:component-scan
 base-package="org.terasoluna.batch.functionaltest.app.common"/>

 <!-- (3) -->
 <batch:job id="simpleJob" job-repository="jobRepository"> <!-- (4) -->
 <batch:step id="simpleJob.step01"> <!-- (5) -->
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="simpleJobTasklet"/> <!-- (6) -->
 </batch:step>
 </batch:job>

</beans>

Example of tasklet implementation class

package org.terasoluna.batch.functionaltest.app.common;

@Component // (3)
public class SimpleJobTasklet implements Tasklet {
 // omitted.
}

S. No. Explanation

(1) Import the settings to always read the required Bean definition when using
TERASOLUNA Batch 5.x.

(2) Set base package to component-scan.
The tasklet model is based on the annotation bean definition, and the bean definition of
the Tasklet implementation class is unnecessary in the XML.

72 | 3.3. Creation of tasklet model job

S. No. Explanation

(3) Job configuration.
id attribute must be unique for all the jobs included in 1 batch application.

(4) JobRepository configuration.
The value to be set in the job-repository attribute should be fixed to jobRepository
unless there is a special reason.
This will allow all the jobs to be managed in one JobRepository. Resolve Bean definition
of jobRepository by (1).

(5) Step configuration.
Although it is not necessary to use a unique id attribute for all the jobs in 1 batch
application, a unique id is used for enabling easy tracking at the time of failure
occurrence.
A format of [step+serial number] is added to id attribute specified in (3) unless there is a
special reason to use a different format.

(6) Tasklet configuration.
The value to be set in the transaction-manager attribute should be fixed to
jobTransactionManager unless there is a special reason.
This will manage the processes of the entire tasklet in one transaction. For details, refer
to Transaction control.
Resolve Bean definition of jobTransactionManager by (1).

Also, the ref attribute specifies a Bean ID of Tasklet implementation class to be resolved
by (2).
SimpleJobTasklet, the tasklet implementation class name should be simpleJobTasklet
with the first letter in lower case.

Bean name when using annotation

Bean name when using @Component annotation is generated through
org.springframework.context.annotation.AnnotationBeanNameGenerator. Refer to
Javadoc of this class when you want to confirm the naming rules.

3.3.2.2. Implementation of tasklet

First, understand the overview with simple implementation, then proceed to implementation using
the components of the chunk model.

It is explained in the following order.

• Implementation of simple tasklet

• Implementation of tasklet using the components of chunk model

3.3.2.3. Implementation of simple tasklet

The basic points are explained through tasklet implementation only for log output.

3.3. Creation of tasklet model job | 73

Example of simple tasklet implementation class

package org.terasoluna.batch.functionaltest.app.common;

// omitted.

@Component
public class SimpleJobTasklet implements Tasklet { // (1)

 private static final Logger logger =
 LoggerFactory.getLogger(SimpleJobTasklet.class);

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception { // (2)
 logger.info("called tasklet."); // (3)
 return RepeatStatus.FINISHED; // (4)
 }
}

Sr. No. Explanation

(1) Implement org.springframework.batch.core.step.tasklet.Tasklet interface using
implements.

(2) Implement the execute method defined by Tasklet interface. The arguments
StepContribution and ChunkContext are used as necessary but the explanation is omitted
here.

(3) Implement any process. INFO log is output here.

(4) Return whether or not the tasklet process is completed.
Always specify as return RepeatStatus.FINISHED;.

3.3.2.4. Implementation of tasklet using the components of chunk model

Spring Batch does not mention using various components of the chunk model during tasklet
implementation. In TERASOLUNA Batch 5.x, you may select this depending on the following
situations.

• When multiple resources are combined and processed, it is difficult to conform to chunk model
format

• In the chunk model, processing is implemented in multiple places, so the tasklet model is easier
to understand the overall image.

• When recovery is made simple and you want to use batch commit of tasklet model instead of
intermediate commit of chunk model

Note that, processing units should also be considered to implement Tasklet by using components of
chunk model. Following 3 patterns can be considered as units of output records.

Units and features of output records

74 | 3.3. Creation of tasklet model job

Output
records

Features

1 record Since data is input, processed and output one by one for each record, processing
images is easy.
It must be noted that performance deterioration is likely to occur due to frequent
I/O in case of large amount of data.

All records Data is input and processed one by one for each record and stored in the memory,
all records are output together in the end.
Data consistency can be ensured and performance can be improved in case of small
amount of data. However, it must be noted that high load is likely to be applied on
resources (CPU, memory) in case of large amount of data.

Fixed records Data is input and processed one by one for each record and stored in the memory,
data is output when a certain number of records are reached.
Performance improvement is anticipated by efficiently processing large amount of
data with certain resources (CPU, memory).
Also, since the data is processed for a fixed number of records, intermediate
commit can also be employed by implementing transaction control. However, it
must be noted that, processed and unprocessed data are likely to exist together in
the recovery if the job has terminated abnormally, in case of intermediate commit
method.

The tasklet implementation that uses ItemReader and ItemWriter which are the components of the
chunk model is explained below.

The implementation example shows processing data one by one for each record.

3.3. Creation of tasklet model job | 75

Tasklet implementation example that uses the components of chunk model

@Component()
@Scope("step") // (1)
public class SalesPlanChunkTranTask implements Tasklet {

 @Inject
 @Named("detailCSVReader") // (2)
 ItemStreamReader<SalesPlanDetail> itemReader; // (3)

 @Inject
 SalesPlanDetailRepository repository; // (4)

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 SalesPlanDetail item;

 try {
 itemReader.open(chunkContext.getStepContext().getStepExecution()
 .getExecutionContext()); // (5)

 while ((item = itemReader.read()) != null) { // (6)

 // do some processes.

 repository.create(item); // (7)
 }
 } finally {
 itemReader.close(); // (8)
 }
 return RepeatStatus.FINISHED;
 }
}

76 | 3.3. Creation of tasklet model job

Bean definition example 1

<!-- omitted -->
<import resource="classpath:META-INF/spring/job-base-context.xml"/>

<context:component-scan
 base-package="org.terasoluna.batch.functionaltest.app.plan" />
<context:component-scan
 base-package="org.terasoluna.batch.functionaltest.ch05.transaction.component" />

<!-- (9) -->
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository.plan"
 factory-ref="jobSqlSessionFactory"/>

<!-- (10) -->
<bean id="detailCSVReader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}">
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="branchId,year,month,customerId,amount"/>
 </property>
 <property name="fieldSetMapper">
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail"/>
 </property>
 </bean>
 </property>
</bean>

<!-- (11) -->
<batch:job id="createSalesPlanChunkTranTask" job-repository="jobRepository">
 <batch:step id="createSalesPlanChunkTranTask.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="salesPlanChunkTranTask"/>
 </batch:step>
</batch:job>

Sr. No. Explanation

(1) Set the same step scope as the Bean scope of ItemReader to be used in this class.

(2) Access input resources (flat files in this example) through ItemReader.
Specify Bean name as detailCSVReader but it is optional for clarity purpose.

3.3. Creation of tasklet model job | 77

Sr. No. Explanation

(3) Define the type as ItemStreamReader that is a sub-interface of ItemReader.
This is because it is necessary to open/close the resource of (5), (8). It is supplemented
later.

(4) Access output resources (database in this example) through Mapper of MyBatis.
The mapper is directly used for the sake of simplicity. There is no need to always use
ItemWriter. Of course, MyBatisBatchItemWriter can be used.

(5) Open input resource.

(6) Loop all input resources sequentially.
ItemReader#read returns null when it reads all the input data and reaches the end.

(7) Output to the database.

(8) The resource should be closed without fail.
Exception handling should be implemented. When an exception occurs, the transactions
of the entire tasklet are rolled-backed, stack trace of exception is output and the job
terminates abnormally.

(9) MyBatis-Spring settings.
For details of MyBatis-Spring settings, refer Database access.

(10) To input from a file, add a bean definition of FlatFileItemReader. The details are not
explained here.

(11) Since all the components are resolved by annotation,
it is same as Implementation of simple tasklet.

On unification of scope

The scope of tasklet implementation class and Bean to be Injected should have the
same scope.

For example, if FlatFileItemReader receives an input file path from an argument,
the Bean scope should be step. In this case, the scope of tasklet implementation
class should also be step.

The case where the scope of the Tasklet implementation class is singleton is
explained. At this time, after instantiating the Tasklet implementation class when
creating the ApplicationContext at application startup it attempts to resolve and
inject the instance of FlatFileItemReader. However, FlatFileItemReader is step
scope and it does not exist yet because it is generated at step execution. As a result,
it is concluded that the Tasklet implementation class cannot be instantiated and
ApplicationContext generation fails.

78 | 3.3. Creation of tasklet model job

Regarding the type of field assigned with @Inject

Any one of the following type depending on the implementation class to be used.

• ItemReader/ItemWriter

◦ Used when there is no need to open/close the target resource.

• ItemSteamReader/ItemStreamWriter

◦ Used when there is a need to open/close the target resource.

Type to be used should always be determined after verifying javadoc. Typical
examples are shown below.

In case of FlatFileItemReader/Writer

handle by ItemSteamReader/ItemStreamWriter

In case of MyBatisCursorItemReader

handle by ItemStreamReader

In case of MyBatisBatchItemWriter

handle by ItemWriter

The implementation example imitates a chunk model to process a certain number of records

Tasklet implementation example 2 that uses the components of chunk model

@Component
@Scope("step")
public class SalesPerformanceTasklet implements Tasklet {

 @Inject
 ItemStreamReader<SalesPerformanceDetail> reader;

 @Inject
 ItemWriter<SalesPerformanceDetail> writer; // (1)

 int chunkSize = 10; // (2)

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 try {
 reader.open(chunkContext.getStepContext().getStepExecution()
 .getExecutionContext());

 List<SalesPerformanceDetail> items = new ArrayList<>(chunkSize); // (2)
 SalesPerformanceDetail item = null;
 do {
 // Pseudo operation of ItemReader

3.3. Creation of tasklet model job | 79

 for (int i = 0; i < chunkSize; i++) { // (3)
 item = reader.read();
 if (item == null) {
 break;
 }
 // Pseudo operation of ItemProcessor
 // do some processes.

 items.add(item);
 }

 // Pseudo operation of ItemWriter
 if (!items.isEmpty()) {
 writer.write(items); // (4)
 items.clear();
 }
 } while (item != null);
 } finally {
 try {
 reader.close();
 } catch (Exception e) {
 // do nothing.
 }
 }

 return RepeatStatus.FINISHED;
 }
}

80 | 3.3. Creation of tasklet model job

Bean definition example 2

<!-- omitted -->
<import resource="classpath:META-INF/spring/job-base-context.xml"/>

<context:component-scan
 base-package="org.terasoluna.batch.functionaltest.app.common,
 org.terasoluna.batch.functionaltest.app.performance,
 org.terasoluna.batch.functionaltest.ch06.exceptionhandling"/>
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository.performance"
 factory-ref="jobSqlSessionFactory"/>

<bean id="detailCSVReader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}">
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="branchId,year,month,customerId,amount"/>
 </property>
 <property name="fieldSetMapper">
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerforman
ceDetail"/>
 </property>
 </bean>
 </property>
</bean>

<!-- (1) -->
<bean id="detailWriter"
 class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.functionaltest.app.repository.performance.SalesPer
formanceDetailRepository.create"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

<batch:job id="jobSalesPerfTasklet" job-repository="jobRepository">
 <batch:step id="jobSalesPerfTasklet.step01">
 <batch:tasklet ref="salesPerformanceTasklet"
 transaction-manager="jobTransactionManager"/>
 </batch:step>
</batch:job>

3.3. Creation of tasklet model job | 81

Sr. No. Explanation

(1) Use MyBatisBatchItemWriter as the implementation of ItemWriter.

(2) ItemWriter outputs a fixed number of records collectively.
Here, 10 records are processed and output.

(3) As per the behavior of chunk model,
it should be read→process→read→process→…→write.

(4) Output through ItemWriter collectively.

Decide each time whether to use the implementation class of ItemReader or ItemWriter. For file
access, the implementation class of ItemReader and ItemWriter can be used. It is not necessary to
forcibly use other database access etc. It can be used to improve performance.

82 | 3.3. Creation of tasklet model job

3.4. Distinguish between chunk model and tasklet
model
Here, how to distinguish between chunk model and tasklet model is explained by organizing each
feature. In the explanation, there are matters to be described in detail in the subsequent chapters,
so please refer to corresponding chapters as appropriate.

Following contents should be viewed as examples for the concepts, and not as constraints or
recommendations. Refer to it while creating a job depending on the characteristics of the users and
systems.

The main differences between the chunk model and the tasklet model are given below.

Comparison of chunk model and tasklet model.

Item Chunk Tasklet

Compon
ents

It consists of 3 components mainly
ItemReader, ItemProcessor and ItemWriter.

It is consolidated in one Tasklet.

Transact
ion

A certain number of records are processed
by issuing intermediate commit. Batch
commit cannot be done.
It can be processed by specific machine
resources regardless of the data count.
If an error occurs during the process,
unprocessed data and processed data get
mixed.

It is basic to process at once in batch
commit. There is a need for the user to
implement intermediate commits.
If the data to be processed is large, machine
resources may get exhausted.
If an error occurs during the process, only
the unprocessed data is rolled back.

Restart It can be restarted based on the record
count.

It cannot be restarted based on the record
count.

Based on this, we will introduce some examples of using each one as follows.

To make recovery as simple as possible

When the job, having error, is to be recovered by only re-running the target job, tasklet model
can be chosen to make recovery simple.
In chunk model, it should be dealt by returning the processed data to the state before executing
the job and by creating a job to process only the unprocessed data.

To consolidate the process contents

When you want to prioritize the outlook of job such as one job in one class, tasklet can be
chosen.

To process large data stably

For example when performing batch process of 10 million records, consider to use chunk model
when the targeting number of cases affects the resources. It means stabilizing the process by
intermediate commit. Even in tasklet model, intermediate commit can be used, but it is simpler
to implement in chunk model.

3.4. Distinguish between chunk model and tasklet model | 83

To restart based on the record count for the recovery after error

When batch window is severe and you want to resume from erroneous data onwards, chunk
model should be chosen to use restart based on the record count provided by Spring Batch. This
eliminates the need to create that mechanism for each job.

Chunk model and tasklet model are basically used in combination.
It is not necessary to implement only one model in all jobs in the batch system.
It is natural to use one model as the basis and the other model depending on the
situation, based on the characteristics of the job of the entire system.

For example, in most cases it is natural to choose a tasklet model as the basis for
processing number and processing time, and in a very small number of cases,
choosing a chunk model for jobs that process large numbers of records.

84 | 3.4. Distinguish between chunk model and tasklet model

Chapter 4. Running a job

4.1. Synchronous job

4.1.1. Overview

Synchronous job is explained. Synchronous job is the execution method of launching a new process
through shell by job scheduler and returning the execution result of the job to the caller.

Overview of synchronous job

Sequence of synchronous job

The usage method of this function is same in the chunk model as well as tasklet model.

4.1.2. How to use

How to run a job by CommandLineJobRunner is explained.

Refer to Create project for building and executing the application. Refer to Job parameters for how
to specify and use job parameters. Some of the explanation in this section overlaps however, the
elements of synchronous job are mainly explained.

4.1. Synchronous job | 85

4.1.2.1. How to run

In TERASOLUNA Batch 5.x, run the synchronous job using CommandLineJobRunner provided by Spring
Batch. Start CommandLineJobRunner by issuing java command as shown below.

CommandLineJobRunner syntax

$ java org.springframework.batch.core.launch.support.CommandLineJobRunner <jobPath>
<options> <jobIdentifier> <jobParameters>

Items to be specified by the arguments

Items to
be
specifie
d

Explanation Require
d

jobPath Bean definition file path where the settings of the job to be run are described.
Specify by relative path from classpath.

options Specify various options (stop, restart etc.) at the time of launching.

jobIdent
ifier

As the identifier of the job, specify the job name in the bean definition or the
job execution ID after executing the job. Normally, specify job name. Job
execution ID is specified only when stopping or restarting.

jobPara
meters

Specify job arguments. Specify in key=value format.

The execution example when only the required items are specified, is shown below.

Execution example of CommandLineJobRunner in command prompt

C:\xxx>java -cp "target\[artifactId]-[version].jar;lib*" ^ # (1)
 org.springframework.batch.core.launch.support.CommandLineJobRunner ^ # (2)
 META-INF/jobs/job01.xml job01 # (3)

Execution example of CommandLineJobRunner in Bash

$ java -cp 'target/[artifactId]-[version].jar:lib/*' \ # (1)
 org.springframework.batch.core.launch.support.CommandLineJobRunner \ # (2)
 META-INF/jobs/job01.xml job01 # (3)

86 | 4.1. Synchronous job

Settings of Bean definition(Abstract)

<batch:job id="job01" job-repository="jobRepository"> <!-- (3) -->
 <batch:step id="job01.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="employeeReader"
 processor="employeeProcessor"
 writer="employeeWriter" commit-interval="10" />
 </batch:tasklet>
 </batch:step>
</batch:job>

Items list of setting contents

Sr. No. Explanation

(1) Specify the batch application jar and dependent jar in classpath at the time of executing
java command. Here, it is specified by command arguments however, environment
variables can also be used.

(2) Specify CommandLineJobRunner with FQCN in the class to be run.

(3) Pass the run arguments along the CommandLineJobRunner. Here, 2 job names are specified
as jobPath and jobIdentifier.

Execution example when launch parameters are specified as the optional items, is shown below.

Execution example of CommandLineJobRunner in command prompt

C:\xxx>java -cp "target\[artifactId]-[version].jar;lib*" ^
 org.springframework.batch.core.launch.support.CommandLineJobRunner ^
 META-INF/jobs/setupJob.xml setupJob target=server1 outputFile=/tmp/result.csv #
(1)

.Execution example of CommandLineJobRunner in Bash

$ java -cp 'target/[artifactId]-[version].jar:lib/*' \
 org.springframework.batch.core.launch.support.CommandLineJobRunner \
 META-INF/jobs/setupJob.xml setupJob target=server1 outputFile=/tmp/result.csv #
(1)

Items list of setting contents

Sr. No. Explanation

(1) target=server1 and outputFile=/tmp/result.csv are specified as job running parameters.

4.1. Synchronous job | 87

4.1.2.2. Options

Supplement the options indicated in CommandLineJobRunner syntax.

In CommandLineJobRunner, the following 4 launch options can be used. Here, only the overview of
each option is explained.

-restart

Restarts the failed job. Refer to Reprocessing for the details.

-stop

Stops a running job. Refer to Job management for the details.

-abandon

Abandons a stopped job. The abandoned job cannot be restarted. In TERASOLUNA Batch 5.x,
there is no case of using this option, hence it is not explained.

-next

Runs the job executed once in the past, again. However, in TERASOLUNA Batch 5.x, this option is
not used.
In TERASOLUNA Batch 5.x, it is for avoiding the restriction "Running the job by the same
parameter is recognized as the same job and the same job can be executed only once" that is
given by default in Spring Batch.
The details are explained in regarding parameter conversion class.
For using this option, implementation class of JobParametersIncrementer interface is required, it
is not set inTERASOLUNA Batch 5.x.
Therefore, when this option is specified and launched, an error occurs because the required
Bean definition does not exist.

88 | 4.1. Synchronous job

4.2. Job parameters

4.2.1. Overview

This section explains about using the job parameter (hereafter referred to as 'parameter').

The usage method of this function is same in the chunk model as well as tasklet model.

A parameter is used to flexibly switch the operation of the job according to the execution
environment and execution timing as shown below.

• File path of process target

• System operation date and time

The following explanation is about assigning parameters.

1. Assign from command-line arguments

2. Redirect from file to standard input

The specified parameters can be referred in Bean definition or in Java under Spring management.

4.2.2. How to use

4.2.2.1. Regarding parameter conversion class

In Spring Batch, the received parameters are processed in the following sequence.

1. The implementation class of JobParametersConverter convert to JobParameters.

2. Refer to the parameters from JobParameters in Bean definition and Java under Spring
management.

Regarding implementation class of parameter conversion class

Multiple implementation classes of the above mentioned JobParametersConverter are provided. The
features of each class are shown below.

• DefaultJobParametersConverter

◦ It can specify the data type of parameters(4 types; String, Long, Date, Double).

• JsrJobParametersConverter

◦ It cannot specify the data type of parameters (Only String).

◦ It assigns ID (RUN_ID) that identifies job execution to parameter with the name
jsr_batch_run_id automatically.

▪ It increments the RUN_ID each time the job is executed. Since it uses SEQUENCE (name is
JOB_SEQ) of the database for incrementing, the name does not overlap.

▪ In Spring Batch, there is a specification that jobs started with the same parameters are
recognized as the same job, and the same job can be executed only once. Whereas,
adding a unique value to the parameter name jsr_batch_run_id will recognize it as a

4.2. Job parameters | 89

separate job. Refer to Spring Batch architecture for details.

In Spring Batch, when the implementation class of JobParametersConverter to be used in Bean
definition, is not specified, DefaultJobParametersConverter is used.
However, in TERASOLUNA Batch 5.x, DefaultJobParametersConverter is not used due to the following
reasons.

• It is common to run one job by the same parameter at different timing.

• It is possible to specify the time stamp of the start time and manage them as different jobs, but it
is complicated to specify job parameters only for that purpose.

• DefaultJobParametersConverter can specify data types for parameters, but handling becomes
complicated when type conversion fails.

In TERASOLUNA Batch 5.x, by using JsrJobParametersConverter, RUN_ID is automatically assigned
without the user knowledge. By this, the same job is handled as a different job in Spring Batch as
seen by the user.

About setting of parameter conversion class

In TERASOLUNA Batch 5.x, it is set in advance so as to use JsrJobParametersConverter in launch-
context.xml.
Therefore, when TERASOLUNA Batch 5.x is used with the recommended setting, there is no need to
set JobParametersConverter.

META-INF\spring\launch-context.xml

<bean id="jobParametersConverter"
 class="org.springframework.batch.core.jsr.JsrJobParametersConverter"
 c:dataSource-ref="adminDataSource" />

<bean id="jobOperator"
 class="org.springframework.batch.core.launch.support.SimpleJobOperator"
 p:jobRepository-ref="jobRepository"
 p:jobRegistry-ref="jobRegistry"
 p:jobExplorer-ref="jobExplorer"
 p:jobParametersConverter-ref="jobParametersConverter"
 p:jobLauncher-ref="jobLauncher" />

The following description assumes that JsrJobParametersConverter is used.

4.2.2.2. Assign from command-line arguments

Firstly, how to assign from the most basic command-line arguments, is explained.

Assignment of parameters

Command-line arguments are enumerated in the <Parameter name>=<Value> format after 3rd
argument of CommandLineJobRunner.

The number and length of parameters are not restricted in Spring Batch or TERASOLUNA Batch 5.x.
However, there are restrictions on the length of command arguments in the OS.

90 | 4.2. Job parameters

Therefore, when a large number of arguments are required, the method of Redirect from file to
standard input and Using parameters and properties together should be used.

Example of setting parameters as command-line arguments

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID param1=abc outputFileName=/tmp/result.csv

Refer to parameters

Parameters can be referred in Bean definition or in Java as shown below.

• Refer in Bean definition

◦ It can be referred by #{jobParameters['xxx']}

• Refer in Java

◦ It can be referred by @Value("#{jobParameters['xxx']}")

The scope of the Bean that refers to JobParameters should be Step scope

When referring to JobParameters, the scope of the Bean to be referred should be
set to Step scope. This is for using the mechanism of late binding of Spring Batch
when JobParameters is to be referred.

As its name implies, late binding is setting of the delayed value.
ApplicationContext of Spring Framework generates an instance of
ApplicationContext after resolving the properties of various Beans by default.
Spring Batch does not resolve the property at the time of generating an instance of
ApplicationContext. It has a function to resolve the property when various Beans
are required. This is what the word Delay means. With this function, after
generating and executing ApplicationContext required for executing the Spring
Batch itself, it is possible to alter the behavior of various Beans according to
parameters.

In addition, Step scope is a unique scope of Spring Batch and a new instance is
generated for each Step execution. And, resolution of values by late binding is
possible by using SpEL expression in Bean definition.

@StepScope annotation cannot be used for specifying Step scope

In Spring Batch, @StepScope is provided as the annotation that specifies Step scope.
However, this is an annotation that can only be used in JavaConfig.

Therefore, specify the Step scope in TERASOLUNA Batch 5.x by any one of the
following methods.

1. In Bean definition, assign scope="step" to Bean.

2. In Java, assign @Scope("step") to class.

4.2. Job parameters | 91

Example of referring to the parameter assigned by the command-line arguments in Bean definition

<!-- (1) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"> <!-- (2) -->
 <property name="lineMapper">
 <!-- omitted settings -->
 </property>
</bean>

Items list of setting contents

Sr. No. Explanation

(1) Specify scope as scope attribute in bean tag.

(2) Specify the parameter to be referred.

Example of referring to the parameter assigned by the command-line arguments in Java

@Component
@Scope("step") // (1)
public class ParamRefInJavaTasklet implements Tasklet {

 /**
 * Holds a String type value
 */
 @Value("#{jobParameters['str']}") // (2)
 private String str;

 // omitted execute()
}

Items list of setting contents

Sr. No. Explanation

(1) Specify scope by assigning @Scope annotation in the class.

(2) Specify the parameter to be referred by using @Value annotation.

4.2.2.3. Redirect from file to standard input

How to redirect from file to standard input is explained.

Creation of file for defining parameters

Define the parameters in the files as follows.

92 | 4.2. Job parameters

params.txt

param1=abc
outputFile=/tmp/result.csv

Redirect the files wherein parameters are defined to standard input

Redirect the files wherein parameters are defined as command-line arguments.

Execution method

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID < params.txt

Refer to parameters

How to refer to the parameters is same as the Assign from command-line arguments method.

4.2.2.4. Set the default value of parameter

When parameters are optional, default values can be set in the following format.

• #{jobParameters['Parameter name'] ?: Default value}

However, in the item where the value is set using parameters, the default values can also differ
with the environment and execution timing same as the parameters.

Firstly, how to hardcode the default values in source code is explained. However, there are many
cases where it is better to use Using parameters and properties together, so refer it also.

Refer to the parameter wherein default value is set

When the relevant parameter is not set, the value set as the default value is referred.

Example of referring to the parameter assigned by the command-line arguments in Bean definition

<!-- (1) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParamaters[inputFile] ?: /input/sample.csv}"> <!-- (2)
-->
 <property name="lineMapper">
 // omitted settings
 </property>
</bean>

Items list of setting contents

Sr. No. Explanation

(1) Specify the scope as scope attribute in the bean tag.

4.2. Job parameters | 93

Sr. No. Explanation

(2) Specify the parameter to be referred.
/input/sample.csv is set as the default value.

Example of referring to the parameter assigned by the command-line arguments in Java

@Component
@Scope("step") // (1)
public class ParamRefInJavaTasklet implements Tasklet {

 /**
 * Holds a String type value
 */
 @Value("#{jobParameters['str'] ?: 'xyz'}") // (2)
 private String str;

 // omitted execute()
}

Items list of setting contents

Sr. No. Explanation

(1) Specify the scope by assigning @Scope annotation in class.

(2) Specify the parameter to be referred by using @Value annotation.
xyz is set as the default value.

4.2.2.5. Validation of parameters

Validation of the parameters is required at job launch in order to prevent operation errors or
unintended behavior.
Validation of parameters can be implemented by using the JobParametersValidator provided by
Spring Batch.

Since parameters are referred at various places such as ItemReader/ItemProcessor/ItemWriter,
validation is performed immediately after the job is launched.

There are two ways to verify the validity of a parameter, and it differs with the degree of
complexity of the verification.

• Simple validation

◦ Application example

▪ Verify that the required parameters are set

▪ Verify that the unspecified parameters are not set

◦ Validator to be used

▪ DefaultJobParametersValidator provided by Spring Batch

• Complex validation

94 | 4.2. Job parameters

◦ Application example

▪ Complex verification such as numerical value range verification, correlation check
between parameters etc.

▪ Verification that cannot be done by DefaultJobParametersValidator provided by Spring
Batch

◦ Validator to be used

▪ Class wherein JobParametersValidator is implemented independently

How to verify the validity of Simple validation and Complex validation is explained respectively.

4.2.2.5.1. Simple validation

Spring Batch provides DefaultJobParametersValidator as the default implementation of
JobParametersValidator.
This validator can verify the following as per the settings.

• Required parameters should be set

• Parameters other than required or optional should not be specified

Definition example is shown as follows.

Definition of validation that uses DefaultJobParametersValidator

<!-- (1) -->
<bean id="jobParametersValidator"
 class="org.springframework.batch.core.job.DefaultJobParametersValidator">
 <property name="requiredKeys"> <!-- (2) -->
 <list>
 <value>jsr_batch_run_id</value> <!-- (3) -->
 <value>inputFileName</value>
 <value>outputFileName</value>
 </list>
 </property>
 <property name="optionalKeys"> <!-- (4) -->
 <list>
 <value>param1</value>
 <value>param2</value>
 </list>
 </property>
</bean>

<batch:job id="jobUseDefaultJobParametersValidator" job-repository="jobRepository">
 <batch:step id="jobUseDefaultJobParametersValidator.step01">
 <batch:tasklet ref="sampleTasklet" transaction-manager="jobTransactionManager"/>
 </batch:step>
 <batch:validator ref="jobParametersValidator"/> <!-- (5) -->
</batch:job>

4.2. Job parameters | 95

Items list of setting contents

Sr. No. Explanation

(1) Define Bean for DefaultJobParametersValidator.

(2) Set the required parameters to property requiredKeys.
Multiple parameter names of the required parameters can be specified using list tag.

(3) Set jsr_batch_run_id to the required parameters.
In TERASOLUNA Batch 5.x, this setting is mandatory when using
DefaultJobParametersValidator.
The reason for making the setting mandatory is explained later.

(4) Set optional parameters to property optionalKeys.
Multiple parameter names of the optional parameters can be specified using list tag.

(5) Apply the validator to the job using validator tag in the job tag.

Required parameters that cannot be omitted in TERASOLUNA Batch 5.x

JsrJobParametersConverter is used for parameter conversion in TERASOLUNA
Batch 5.x, so the following parameters are always set.

• jsr_batch_run_id

Therefore, jsr_batch_run_id should be included in the requiredKeys.
Refer to Regarding parameter conversion class for detailed explanation.

Example of parameter definition

<bean id="jobParametersValidator"

class="org.springframework.batch.core.job.DefaultJobParametersValidator
">
 <property name="requiredKeys">
 <list>
 <value>jsr_batch_run_id</value> <!-- mandatory -->
 <value>inputFileName</value>
 <value>outputFileName</value>
 </list>
 </property>
 <property name="optionalKeys">
 <list>
 <value>param1</value>
 <value>param2</value>
 </list>
 </property>
</bean>

OK case and NG case when DefaultJobParametersValidator is used

An example when the verification result is OK and NG are shown to understand the conditions that
can be verified with DefaultJobParametersValidator.

96 | 4.2. Job parameters

DefaultJobParametersValidator definition example

<bean id="jobParametersValidator"
 class="org.springframework.batch.core.job.DefaultJobParametersValidator"
 p:requiredKeys="outputFileName"
 p:optionalKeys="param1"/>

NG case1

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID param1=aaa

NG as the required parameter outputFile is not set.

NG case 2

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID outputFileName=/tmp/result.csv param2=aaa

NG as the parameter param2 which is not specified for either the required parameter or the
optional parameter is set.

OK case 1

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID param1=aaa outputFileName=/tmp/result.csv

OK as the parameters specified as required and optional are set.

OK case 2

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID fileoutputFilename=/tmp/result.csv

OK as the required parameters are set and there is no need to set optional parameters.

4.2.2.5.2. Complex validation

Implementing JobParametersValidator interface independently helps in verifying the parameters as
per requirements.

Implement JobParametersValidator class as follows.

• Implement JobParametersValidator class and override the validate method

4.2. Job parameters | 97

• Implement validate method as follows

◦ Fetch each parameter from JobParameters and verify

▪ If the verification result is OK, there is no need to perform any operation

▪ If verification result is NG, throw JobParametersInvalidException

Implementation example of JobParametersValidator class is shown. In this case, it is verified that the
length of the string specified by str is less than or equal to the number specified by num.

Implementation example of JobParametersValidator interface

public class ComplexJobParametersValidator implements JobParametersValidator { // (1)
 @Override
 public void validate(JobParameters parameters) throws
JobParametersInvalidException {
 Map<String, JobParameter> params = parameters.getParameters(); // (2)

 String str = params.get("str").getValue().toString(); // (3)
 int num = Integer.parseInt(params.get("num").getValue().toString()); // (4)

 if(str.length() > num){
 throw new JobParametersInvalidException(
 "The str must be less than or equal to num. [str:"
 + str + "][num:" + num + "]"); // (5)
 }
 }
}

Items list of setting contents

Sr. No. Explanation

(1) Implement JobParametersValidator class and override validate method.

(2) Receive the parameters as arguments in JobParameters type.
By setting parameters.getParameters(), it is easier to refer the parameters by fetching
them in Map format.

(3) Get parameters by specifying key.

(4) Convert parameters to int type. When handling parameters of other than String type,
they should be appropriately converted.

(5) Validation result is NG when the string length of the parameter str exceeds the value of
parameter num.

98 | 4.2. Job parameters

Job definition example

<batch:job id="jobUseComplexJobParametersValidator" job-repository="jobRepository">
 <batch:step id="jobUseComplexJobParametersValidator.step01">
 <batch:tasklet ref="sampleTasklet" transaction-manager=
"jobTransactionManager"/>
 </batch:step>
 <batch:validator> <!-- (1) -->
 <bean
class="org.terasoluna.batch.functionaltest.ch04.jobparameter.ComplexJobParametersValid
ator"/>
 </batch:validator>
</batch:job>

Items list of setting contents

Sr. No. Explanation

(1) Apply validator in the job by using validator tag in the job tag.

Regarding validation of parameters at asynchronous start

By the asynchronous start method (DB polling and Web container), it is possible to
verify the parameters at the job launch in the same way, however, it is desirable to
verify them before launching the job at the following timing.

• DB polling

◦ Before INSERTing to job request table

• Web container

◦ At the time of calling Controller (assign @Validated)

In case of asynchronous start, since it is necessary to confirm the result separately,
errors such as parameter settings should be responded quickly and job requests
should be rejected.

Also, in validation at this time, there is no need to use JobParametersValidator. The
function to INSERT in the job request table or the controller in the Web container
should not depend on Spring Batch in most of the cases and it is better to avoid
relying on Spring Batch only for using JobParametersValidator.

4.2.3. How to extend

4.2.3.1. Using parameters and properties together

Spring Framework based on Spring Batch is equipped with the property management function to
enable it to handle the values set in the environment variables and property files. For details, refer
to Property management of TERASOLUNA Server 5.x Development Guideline.

By combining properties and parameters, it is possible to overwrite some parameters after making

4.2. Job parameters | 99

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/GeneralFuncDetail/PropertyManagement.html

common settings for most jobs in the property file.

About when parameters and propertis are resolved

As mentioned above, parameters and properties are different components that
provide the function.
Spring Batch has a function of parameter management and Spring Framework has
a function of property management.
This difference appears in the description method.

• In case of function possessed by Spring Batch

◦ #{jobParamaters[xxx]}

• In case of function possessed by Spring Framework

◦ @Value("${xxx}")

The timing of resolving each value is different.

• In case of function possessed by Spring Batch

◦ It is set when the job is executed after generating Application Context.

• In case of function possessed by Spring Framework

◦ It is set at the time of generating Application Context.

Therefore, the parameter value is given priority by Spring Batch.
Note that since the application is effective when they are combined together, both
of them should be treated individually

How to set by combining properties and parameters, is explained.

In addition to the setting by environment variables, when additional setting is done by command-line
arguments.

In addition to the setting by environment variables, how to set the parameters using command-line
arguments, is explained.
It is possible to refer to it in the same manner as Bean definition.

Example of setting parameters by command-line arguments in addition to environment variables

Set environment variables
$ export env1=aaa
$ export env2=bbb

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID param3=ccc outputFile=/tmp/result.csv

100 | 4.2. Job parameters

Example of referring environment variables and parameters in Java

@Value("${env1}") // (1)
private String param1;

@Value("${env2}") // (1)
private String param2;

private String param3;

@Value("#{jobParameters['param3']") // (2)
public void setParam3(String param3) {
 this.param3 = param3;
}

Items list of setting contents

Sr. No. Explanation

(1) Specify the environment variables to be referred by using @Value annotation.
The format for reference is ${Environment variable name}.

(2) Specify the parameters to be referred by using @Value annotation.
The format for reference is #{jobParameters['Parameter name'].

Example when environment variables are default

Set environment variables
$ export env1=aaa

Execute job
$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 JobDefined.xml JOBID param1=bbb outputFile=/tmp/result.csv

Example of referring parameters by setting default values for environment variables in Java

@Value("#{jobParameters['param1'] ?: '${env1}'}") // (1)
public void setParam1(String param1) {
 this.param1 = param1;
}

Items list of setting contents

Sr. No. Explanation

(1) Specify the parameters to be referred by using @Value annotation by setting default
values in environment variables.
When parameters are not set, the value of environment variables are set.

4.2. Job parameters | 101

How to set incorrect default values

In the following definition, please note that when you do not set param1 from the
command line argument and even if you want the value of env1 to be set in
param1, it will be set to null.

Setting method example of incorrect default value

@Value("${env1}")
private String param1;

@Value("#{jobParameters['param1']}")
public void setParam1(String param1) {
 this.param1 = param1;
}

102 | 4.2. Job parameters

4.3. Asynchronous execution (DB polling)

4.3.1. Overview

Running a job using DB polling is explained.

The way to use this function is same in chunk model and tasklet model.

4.3.1.1. What is asynchronous execution by using DB polling?

A dedicated table which registers jobs to be executed asynchronously (hereafter referred to as Job-
request-table) is monitored periodically and the job is asynchronously executed based on the
registered information.
In TERASOLUNA Batch 5.x, a module which monitors the table and starts the job is defined with the
name asynchronous batch daemon. Asynchronous batch daemon runs as a single Java process and
executes by assigning threads in the process for each job.

4.3.1.1.1. Functions offered by TERASOLUNA Batch 5.x

TERASOLUNA Batch 5.x offers following functions as Asynchronous execution (DB polling).

List of asynchronous execution (DB polling) functions

Function Description

Asynchronous batch daemon function A function which permanently executes Job-request-table
polling function

Job-request-table polling function A function which asynchronously executes the job based
on the information registered in the Job-request-table.
It also offers a table definition of Job-request-table.

Usage premise

Only job requests are managed in Job-request-table. Execution status and result of requested job
are entrusted to JobRepository. It is assumed that job status is managed through these two factors.

Further, if in-memory database is used in JobRepository, JobRepository is cleared after terminating
asynchronous batch daemon and job execution status and results cannot be referred. Hence, it is
assumed that a database that is ensured to be persistent is used in JobRepository.

4.3. Asynchronous execution (DB polling) | 103

Using in-memory database

If there is a means to obtain the success or failure of the job execution result
without referring to the JobRepository, cases of using the in-memory database can
be considered.
In case of long-term continuous operation in an in-memory database, there is a
possibility that a large amount of memory resources are consumed and adversely
affect the job execution.
In other words, in-memory database is not suitable for long term continuous
operations and should be restarted periodically.
However, if it is to be used for long term continuous operations, maintenance
work like deleting data periodically from JobRepository is necessary.
In case of a restart, if initialization is enabled, it gets recreated at the time of
restart. Hence, maintenance is not required. For initialization, refer Database
related settings.

4.3.1.1.2. Usage scene

A few scenes which use asynchronous execution (DB polling).

List of application scenes

Usage scene Description

Delayed processing When it is not necessary to complete the operation
immediately in coordination with online processing and
the operation which takes time to process is to be
extracted as a job.

Continuous execution of jobs with
short processing time

When continuous processing for several seconds to
several tens of seconds is executed per job,
it is possible to avoid compression of resources by start
and stop of Java process for each job, by using
asynchronous execution (DB polling). Further, since it
leads to omission of start and end processing, it is possible
to reduce execution time of the job.

Aggregation of large number of jobs Same as continuous execution of jobs with short
processing time.

Points to choose asynchronous execution(DB polling) instead of asynchronous
execution (Web container)

Points to choose asynchronous execution(DB polling) instead of "Asynchronous
execution (Web container)" are shown below.

• A hurdle in the introduction of WebAP server in batch processing

• Consider only database while ensuring availability

◦ Alternatively, since the access is concentrated in the database, scale is not
likely to be like asynchronous execution (Web container).

104 | 4.3. Asynchronous execution (DB polling)

Reasons not to use Spring Batch Integration

The same function can be implemented by using Spring Batch Integration.
However, when Spring Batch Integration is used, it is necessary to understand and
fetch technical elements including the elements other than that of asynchronous
execution.
Accordingly, application of Spring Batch Integration is deferred in order to avoid
difficulty in understanding / use / customization of this function.

Precautions in asynchronous execution (DB polling)

When a large number of super short batches which are less than several seconds
for each job are executed, database including JobRepository is accessed every time.
Since performance degradation can occur at this point of time, mass processing of
super short batches is not suitable for asynchronous execution (DB polling). Based
on this point, when using this function, verify sufficiently whether the target
performance can be satisfied.

4.3.2. Architecture

4.3.2.1. Processing sequence of DB polling

Processing sequence of DB polling is explained.

Sequence diagram of DB polling

1. Launch AsyncBatchDaemon from sh, etc.

2. AsyncBatchDaemon reads all the bean definition files that defined the job at the startup.

3. AsyncBatchDaemon starts TaskScheduler for polling at regular intervals.

◦ TaskScheduler starts a specific process at regular interval.

4. TaskScheduler starts JobRequestPollTask (a process which performs polling of Job-request-table).

5. JobRequestPollTask fetches a record for which the polling status is "not executed" (INIT), from

4.3. Asynchronous execution (DB polling) | 105

Job-request-table.

◦ Fetch a fixed number of records collectively. Default is 3 records.

◦ When the target record does not exist, perform polling at regular intervals. Default is 5
seconds interval.

6. JobRequestPollTask allocates jobs to thread and executes them based on information of records.

7. JobRequestPollTask updates polling status of the Job-request-table to "polled" (POLLED).

◦ When number of synchronous execution jobs is achieved, the record which cannot be
activated from the fetched records is discarded and the record is fetched again at the time of
next polling process.

8. For jobs assigned to threads, start jobs with JobOperator.

9. Fetch job execution ID of executed jobs (Job execution id).

10. JobRequestPollTask updates the polling status of the Job-request-table to "Executed" (EXECUTED)
based on job execution ID fetched at the time of job execution.

Supplement of processing sequence

Spring Batch reference shows that asynchronous execution can be implemented
by setting AsyncTaskExecutor in JobLauncher. However, when this method is
adopted, AsyncTaskExecutor cannot detect the state wherein job execution cannot
be performed. This issue occurs when there is no thread assigned to the job and it
is likely to lead to following events.

• Even though the job cannot be executed, it tries to run the job and continues to
perform unnecessary operation.

• The job does not run in the polling sequence, but appears to be starting
randomly on the Job-request-table depending on the time when the thread is
free.

The processing sequence described earlier is used in order to avoid this
phenomenon.

4.3.2.2. About the table to be polled

Explanation is given about table which performs polling in asynchronous execution (DB polling).

Following database objects are necessary.

• Job-request-table (Required)

• Job sequence (Required for some database products)

◦ It is necessary when database does not support auto-numbering of the columns.

4.3.2.2.1. Job-request-table structure

PostgreSQL from database products corresponding to TERASOLUNA Batch 5.x is shown. For other
databases, refer DDL included in jar of TERASOLUNA Batch 5.x.

106 | 4.3. Asynchronous execution (DB polling)

1. Regarding character string stored in the job request table

Similar to meta data table, job request table column provides a DDL which explicitly sets
character data type in character count definition.

batch_job_request (In case of PostgreSQL)

Column Name Data type Constraint Description

job_seq_id bigserial

(Use bigint to
define a separate
sequence)

NOT NULL
PRIMARY KEY

A number to determine the sequence
of jobs to be executed at the time of
polling.
Use auto-numbering function of
database.

job_name varchar(100) NOT NULL Job name to be executed.
Required parameters for job
execution.

job_parameter varchar(200) - Parameters to be passed to jobs to be
executed.

Single parameter format is same as
synchronous execution, however,
when multiple parameters are to be
specified, each parameter must be
separated by a comma (see below)
unlike blank delimiters of
synchronous execution.

{Parameter name}={Parameter
value},{Parameter name}={Parameter
value}…

job_execution_id bigint - ID to be paid out at the time of job
execution.
Refer JobRepository using ID as a key.

polling_status varchar(10) NOT NULL Polling process status.
INIT : Not executed
POLLED: Polled
EXECUTED : Job executed

create_date TIMESTAMP NOT NULL Date and time when the record of the
job request is registered.

update_date TIMESTAMP - Date and time when the record of job
request is updated.

DDL is as below.

4.3. Asynchronous execution (DB polling) | 107

CREATE TABLE IF NOT EXISTS batch_job_request (
 job_seq_id bigserial PRIMARY KEY,
 job_name varchar(100) NOT NULL,
 job_parameter varchar(200),
 job_execution_id bigint,
 polling_status varchar(10) NOT NULL,
 create_date timestamp NOT NULL,
 update_date timestamp
);

4.3.2.2.2. Job request sequence structure

When the database does not support auto-numbering of database columns, numbering according to
sequence is required.
A PostgreSQL from database products corresponding to TERASOLUNA Batch 5.x is shown.
For other databases, refer DDL included in jar of TERASOLUNA Batch 5.x.

DDL is as below.

CREATE SEQUENCE batch_job_request_seq MAXVALUE 9223372036854775807 NO CYCLE;

A job request sequence is not defined in DDL included in jar of TERASOLUNA
Batch 5.x, for databases supporting auto-numbering of columns. When you want
to change maximum value in the sequence, it is preferable to define the job
request sequence besides changing data type of job_seq_id from auto-numbering
definition to numeric data type (In case of PostgreSQL, from bigserial to bigint).

4.3.2.2.3. Transition pattern of polling status (polling_status)

Transition pattern of polling status is shown in the table below.

Transition pattern list of polling status

Transition source Transition
destination

Description

INIT INIT When the number of synchronous executions has been
achieved and execution of job is denied, status remains
unchanged.
It acts as a record for polling at the time of next polling.

INIT POLLED Transition is done when the job is successfully started.
Status when the job is running.

POLLED EXECUTED Transition occurs when job execution is completed.

4.3.2.2.4. Job request fetch SQL

Number to be fetched by job request fetch SQL is restricted in order to fetch job request for number
of synchronously executed jobs.

108 | 4.3. Asynchronous execution (DB polling)

Job request fetch SQL varies depending on the database product and version to be used. Hence, it
may not be possible to handle with SQL provided by TERASOLUNA Batch 5.x.
In that case, SQLMap of BatchJobRequestMapper.xml should be redefined using Customising Job-
request-table as a reference.
For SQL offered, refer BatchJobRequestMapper.xml included in jar of TERASOLUNA Batch 5.x.

4.3.2.3. About job running

Running method of job is explained.

Job is run by start method of JobOperator offered by Spring Batch in Job-request-table polling
function of TERASOLUNA Batch 5.x.

With TERASOLUNA Batch 5.x, guidelines explain the restart of jobs started by asynchronous
execution (DB polling) from the command line. Hence, JobOperator also contains startup methods
like restart etc besides start, however, only start method is used.

Arguments of start method

jobName

Set the value registered in job_name of Job-request-table.

jobParametrers

Set the value registered in job_parameters of Job-request-table.

4.3.2.4. When abnormality is detected in DB polling process

Explanation is given for when an abnormality is detected in DB polling process.

4.3.2.4.1. Database connection failure

Describe behaviour for the processing performed at the time of failure occurrence.

When records of Job-request-table are fetched

• JobRequestPollTask results in an error, however, JobRequestPollTask is executed again in next
polling.

While changing the polling status from INIT to POLLED

• JobRequestPollTask terminates with an error prior to executing job by JobOperator. Polling
status remains unchanged as INIT.

• In the polling process performed after connection failure recovery, the job becomes a target
for execution as there is no change in the Job-request-table and the job is executed at the
next polling.

While changing polling status from POLLED to EXECUTED

• JobRequestPollTask terminates with an error since the job execution ID cannot be updated in
the Job-request-table. Polling status remains unchanged as POLLED.

• It is out of the scope for the polling process to be performed after connection failure
recovery and the job at the time of failure is not executed.

4.3. Asynchronous execution (DB polling) | 109

• Since a job execution ID cannot be identified from a Job-request-table, final status of the job
is determined from log or JobRepository and re-execute the job as a process of recovery
when required.

Even if an exception occurs in JobRequestPollTask, it is not restored immediately.
Reason is given below.

1. Since JobRequestPollTask is started at regular intervals, auto-restoration is
possible (not immediate) by delegating the operation to JobRequestPollTask.

2. It is very rare to be able to recover after retrying immediately at the time of
failure occurrence, in addition, it is likely to generate load due to attempt of
retry.

4.3.2.4.2. Abnormal termination of asynchronous batch daemon process

When a process of asynchronous batch daemon terminates abnormally, transaction of the job being
executed is rolled back implicitly.
State of the polling status is same as status at the time of database connection failure.

4.3.2.5. Stopping DB polling process

Asynchronous batch daemon (AsyncBatchDaemon) stops by generation of a file. After confirming that
the file has been generated, make the polling process idle, wait as long as possible to job being
started and then stop the process.

4.3.2.6. About application configuration specific to asynchronous execution

Configuration specific to asynchronous execution is explained.

4.3.2.6.1. ApplicationContext configuration

Asynchronous batch daemon reads async-batch-daemon.xml dedicated to asynchronous execution as
ApplicationContext. Configuration below is added besides launch-context.xml used in synchronous
execution as well.

Asynchronous execution settings

A bean necessary for asynchronous execution like JobRequestPollTask etc. is defined.

Job registration settings

Job executed as an asynchronous execution registers by
org.springframework.batch.core.configuration.support.AutomaticJobRegistrar. Context for each
job is modularized by using AutomaticJobRegistrar. When modularization is done, it does not
pose an issue even of Bean ID used between the jobs is duplicated.

110 | 4.3. Asynchronous execution (DB polling)

What is modularization

Modularization is a hierarchical structure of "Common definition - Definition of
each job" and the bean defined in each job belongs to an independent context
between jobs. If a reference to a bean which is not defined in each job definition
exists, it refers to a bean defined in common definition.

4.3.2.6.2. Bean definition structure

Bean definition of a job can have the same configuration as the bean definition of synchronous
execution. However, following precautions must be taken.

• When job is to be registered by AutomaticJobRegistrar, Bean ID of the job is an identifier, and
hence should not be duplicated.

• It is also desirable to not to duplicate Bean ID of step.

◦ Only the job ID should be uniquely designed by designing naming rules of Bean ID as {Job
ID}.{Step ID}.

Import of job-base-context.xml in the bean definition of job varies for
synchronous and asynchronous execution.

• In synchronous execution, launch-context.xml is imported from job-base-
context.xml.

• In asynchronous execution, launch-context.xml is not imported from job-base-
context.xml. Alternatively, import launch-context.xml from async-batch-
daemon.xml which AsyncBatchDaemon loads.

This is because various beans required for starting Spring Batch need not be
instantiated for each job. Only one bean should be created in common definition
(async-batch-daemon.xml) which acts as a parent for each job, from various beans
required for starting Spring Batch.

4.3.3. How to use

4.3.3.1. Various settings

4.3.3.1.1. Settings for polling process

Use batch-application.properties for settings required for asynchronous execution.

4.3. Asynchronous execution (DB polling) | 111

batch-application.properties

#(1)
Admin DataSource settings.
admin.jdbc.driver=org.postgresql.Driver
admin.jdbc.url=jdbc:postgresql://localhost:5432/postgres
admin.jdbc.username=postgres
admin.jdbc.password=postgres

TERASOLUNA AsyncBatchDaemon settings.
(2)
async-batch-daemon.schema.script=classpath:org/terasoluna/batch/async/db/schema-
postgresql.sql
(3)
async-batch-daemon.job-concurrency-num=3
(4)
async-batch-daemon.polling-interval=5000
(5)
async-batch-daemon.polling-initial-delay=1000
(6)
async-batch-daemon.polling-stop-file-path=/tmp/stop-async-batch-daemon

Setup details item list

Sr. No. Description

(1) Connection settings for database wherein Job-request-table is stored.
JobRepository settings are used by default.

(2) DDL path that defines the job request table.
If there is no job request table at startup of the asynchronous batch daemon, it is
automatically generated.
This is primarily a test function, it is possible to set whether to execute or not in data-
source.initialize.enabled of batch-application.properties.
For detailed definition, refer <jdbc:initialize-database> in async-batch-daemon.xml.

(3) Setting for records which are fetched collectively at the time of polling. This setup value
is also used as a synchronous parallel number.

(4) Polling cycle settings. Unit is milliseconds.

(5) Polling initial start delay time settings. Unit is milliseconds.

(6) Exit file path settings.

112 | 4.3. Asynchronous execution (DB polling)

Changing setup value using environment variable

Setup value of batch-application.properties can be changed by defining
environment variable with same name.
When an environment variable is set, it is prioritized over property value.
This happens due to Bean definition below.

Settings for launch-context.xml

<context:property-placeholder location="classpath:batch-
application.properties"
 system-properties-mode="OVERRIDE"
 ignore-resource-not-found="false"
 ignore-unresolvable="true"
 order="1"/>

For details, refer How to define a property file of TERASOLUNA Server 5.x
Development Guideline.

4.3.3.1.2. Job settings

Job to be executed asynchronously is set in automaticJobRegistrar of async-batch-daemon.xml.
Default settings are shown below.

async-batch-daemon.xml

<bean id="automaticJobRegistrar"

class="org.springframework.batch.core.configuration.support.AutomaticJobRegistrar">
 <property name="applicationContextFactories">
 <bean
class="org.springframework.batch.core.configuration.support.ClasspathXmlApplicationCon
textsFactoryBean">
 <property name="resources">
 <list>
 <value>classpath:/META-INF/jobs/**/*.xml</value> <!-- (1) -->
 </list>
 </property>
 </bean>
 </property>
 <property name="jobLoader">
 <bean
class="org.springframework.batch.core.configuration.support.DefaultJobLoader"
 p:jobRegistry-ref="jobRegistry" />
 </property>
</bean>

Setting details item list

4.3. Asynchronous execution (DB polling) | 113

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/GeneralFuncDetail/PropertyManagement.html#technical-details-label

Sr.No. Description

(1) A path for Bean definition of a job executed asynchronously.

About registered jobs

For registering jobs, jobs which are designed and implemented on the premise that
they are executed asynchronously should be specified. If the jobs which are not
supposed to be executed asynchronously are included, exceptions may occur due
to unintended references at the time of job registration.

Example of Narrowing down

<bean id="automaticJobRegistrar"

class="org.springframework.batch.core.configuration.support.AutomaticJo
bRegistrar">
 <property name="applicationContextFactories">
 <bean
class="org.springframework.batch.core.configuration.support.ClasspathXm
lApplicationContextsFactoryBean">
 <property name="resources">
 <list>
 <!-- For the async directory and below -->
 <value>classpath:/META-
INF/jobs/aysnc/**/*.xml</value>
 <!-- For a specific job -->
 <value>classpath:/META-
INF/jobs/CASE100/SpecialJob.xml</value>
 </list>
 </property>
 </bean>
 </property>
 <property name="jobLoader">
 <bean
class="org.springframework.batch.core.configuration.support.DefaultJobL
oader"
 p:jobRegistry-ref="jobRegistry" />
 </property>
</bean>

114 | 4.3. Asynchronous execution (DB polling)

Input value verification for job parameters

JobPollingTask does not validate the records obtained from Job-request-table.
Hence, the job name and job parameter must be verified for the table registration.
If the job name is incorrect, job is not detected even if it has started and an
exception occurs.
If the job parameter is incorrect, an erroneous operation is performed even if the
job has started.
Only job parameters can be verified once the job is started. For verification of job
parameters, refer "Validity verification of parameters".

Job design considerations

As a characteristic of asynchronous execution (DB polling), the same job can be
executed in parallel. It is necessary to prevent the same job to create an impact
when the jobs are run in parallel.

4.3.3.2. From start to end of asynchronous execution

Start and end of asynchronous batch daemon and how to register in Job-request-table are
explained.

4.3.3.2.1. Start of asynchronous batch daemon

Start AsyncBatchDaemon offered by TERASOLUNA Batch 5.x.

Start of AsyncBatchDaemon

Start AsyncBatchDaemon
$ java -cp dependency/* org.terasoluna.batch.async.db.AsyncBatchDaemon

In this case, META-INF/spring/async-batch-daemon.xml is read and various Beans are generated.

Further, when async-batch-daemon.xml customised separately, it is implemented by specifying first
argument and starting AsyncBatchDaemon.
Bean definition file specified in the argument must be specified as a relative path from the class
path.
Note that, the second and subsequent arguments are ignored.

When customised META-INF/spring/customized-async-batch-daemon.xml is used,

Start AsyncBatchDaemon
$ java -cp dependency/* org.terasoluna.batch.async.db.AsyncBatchDaemon \
 META-INF/spring/customized-async-batch-daemon.xml

Customisation of async-batch-daemon.xml can be modified directly by changing some of the settings.
However, when significant changes are added or when multiple settings are managed in Multiple
runningsdescribed later, it is easier to manage and create separate files.
It should be choosed according to user’s situation..

4.3. Asynchronous execution (DB polling) | 115

It is assumed that jar expressions necessary for execution are stored under
dependency.

4.3.3.2.2. Job request

Register in Job-request-table by issuing SQL of INSERT statement.

In case of PostgreSQL

INSERT INTO batch_job_request(job_name,job_parameter,polling_status,create_date)
VALUES ('JOB01', 'param1=dummy,param2=100', 'INIT', current_timestamp);

4.3.3.2.3. Stopping asynchronous batch daemon

Keep exit file set in batch-application.properties.

$ touch /tmp/stop-async-batch-daemon

When the exit file exists prior to starting asynchronous batch daemon

When the exit file exists prior to starting asynchronous batch daemon,
asynchronous batch daemon terminates immediately. Asynchronous batch
daemon must be started in the absence of exit file.

4.3.3.3. Confirm job status

Job status management is performed with JobRepository offered by Spring Batch and the job status
is not managed in the Job-request-table. Job-request-table has a column of job_execution_id and job
status corresponding to individual requests can be confirmed by the value stored in this column.
Here, a simple example wherein SQL is issued directly and job status is confirmed is shown. For
details of job status confirmation, refer "Status confirmation".

116 | 4.3. Asynchronous execution (DB polling)

In case of PostgreSQL

SELECT job_execution_id FROM batch_job_request WHERE job_seq_id = 1;

job_execution_id

 2
(1 row)

SELECT * FROM batch_job_execution WHERE job_execution_id = 2;

job_execution_id | version | job_instance_id | create_time |
start_time | end_time | status | exit_code | exit_message |
ocation
------------------+---------+-----------------+-------------------------+
-------------------------+-------------------------+-----------+-----------+
--------------+-

 2 | 2 | 2 | 2017-02-06 20:54:02.263 | 2017-02-06 20
:54:02.295 | 2017-02-06 20:54:02.428 | COMPLETED | COMPLETED | |
(1 row)

4.3.3.4. Recovery after a job is terminated abnormally

For basic points related to the recovery of a job which is terminated abnormally, refer "Re-
execution of process". Here, points specific to asynchronous execution are explained.

4.3.3.4.1. Re-run

Job which is terminated abnormally is re-run by inserting it as a separate record in Job-request-
table.

4.3.3.4.2. Restart

When the job which is terminated abnormally is to be restarted, it is executed as a synchronous
execution job from the command line. The reason for executing from the command line is "since it
is difficult to determine whether the restart is intended or whether it is an unintended duplicate
execution resulting in chaotic operation."
For restart methods, refer "Job restart".

4.3.3.4.3. Termination

1. When the process has not terminated even after exceeding the expected processing time,
attempt terminating the operation from the command line. For methods of termination, refer
"Job stop".

2. When the termination is not accepted even from a command line, asynchronous batch daemon
should be terminated by Stopping asynchronous batch daemon.

3. If even an asynchronous batch daemon cannot be terminated, process of asynchronous batch
daemon should be forcibly terminated.

4.3. Asynchronous execution (DB polling) | 117

Adequate care should be taken not to impact other jobs when an asynchronous
batch daemon is being terminated.

4.3.3.5. About environment deployment

Building and deploying job is same as a synchronous execution. However, it is important to narrow
down the jobs which are executed asynchronously as shown in Job settings.

4.3.3.6. Evacuation of cumulative data

If you run an asynchronous batch daemon for a long time, a huge amount of data is accumulated in
JobRepository and the Job-request-table. It is necessary to clear this cumulative data for the
following reasons.

• Performance degradation when data is retrieved or updated for a large quantity of data.

• Duplication of ID due to circulation of ID numbering sequence.

For evacuation of table data and resetting a sequence, refer manual for the database to be used.

List of tables and sequences for evacuation is shown below.

List for evacuation

Table/Sequence Framework offered

batch_job_request TERASOLUNA Batch 5.x

batch_job_request_seq

batch_job_instance Spring Batch

batch_job_exeution

batch_job_exeution_params

batch_job_exeution_context

batch_step_exeution

batch_step_exeution_context

batch_job_seq

batch_job_execution_seq

batch_step_execution_seq

Auto-numbering column sequence

Since a sequence is created automatically for an auto-numbering column,
remember to include this sequence while evacuating data.

118 | 4.3. Asynchronous execution (DB polling)

About database specific specifications

Note that Oracle uses database-specific data types in some cases, such as using
CLOB for data types.

4.3.4. How to extend

4.3.4.1. Customising Job-request-table

Job-request-table can be customised by adding a column in order to change extraction conditions of
fetched records. However, only BatchJobRequest can be passed as an item while issuing SQL from
JobRequestPollTask.

Extension procedure by customising the Job-request-table is shown below.

1. Customising Job-request-table

2. Creating an extension interface of BatchJobRequestRepository interface

3. Defining SQLMap which uses customised table

4. Modifying Bean definition of async-batch-daemon.xml

Examples of customization are as below.

• Example of controlling job execution sequence by priority column

• Distributed processing by multiple processes using a group ID

Hereafter, the extension procedure will be described for these two examples.

4.3.4.1.1. Example of controlling job execution sequence by priority column

1. Customising Job-request-table

Add a priority column (priority) in Job-request-table.

Adding a priority column (In case of PostgreSQL)

CREATE TABLE IF NOT EXISTS batch_job_request (
 job_seq_id bigserial PRIMARY KEY,
 job_name varchar(100) NOT NULL,
 job_parameter varchar(200),
 priority int NOT NULL,
 job_execution_id bigint,
 polling_status varchar(10) NOT NULL,
 create_date timestamp NOT NULL,
 update_date timestamp
);

2. Create extension interface of BatchJobRequestRepository interface

An interface which extends BatchJobRequestRepository interface is created.

4.3. Asynchronous execution (DB polling) | 119

Extension interface

// (1)
public interface CustomizedBatchJobRequestRepository extends BatchJobRequestRepository
{
 // (2)
}

Extension points

Sr. No. Description

(1) Extend BatchJobRequestRepository.

(2) Do not add a method.

3. Definition of SQLMap which use a customised table

Define SQL in SQLMap with group ID as a condition for extraction.

120 | 4.3. Asynchronous execution (DB polling)

SQLMap definition (CustomizedBatchJobRequestRepository.xml)

<!-- (1) -->
<mapper
namespace="org.terasoluna.batch.extend.repository.CustomizedBatchJobRequestRepository"
>

 <select id="find" resultType=
"org.terasoluna.batch.async.db.model.BatchJobRequest">
 SELECT
 job_seq_id AS jobSeqId,
 job_name AS jobName,
 job_parameter AS jobParameter,
 job_execution_id AS jobExecutionId,
 polling_status AS pollingStatus,
 create_date AS createDate,
 update_date AS updateDate
 FROM
 batch_job_request
 WHERE
 polling_status = 'INIT'
 ORDER BY
 priority ASC, <!--(2) -->
 job_seq_id ASC
 LIMIT #{pollingRowLimit}
 </select>

 <!-- (3) -->
 <update id="updateStatus">
 UPDATE
 batch_job_request
 SET
 polling_status = #{batchJobRequest.pollingStatus},
 job_execution_id = #{batchJobRequest.jobExecutionId},
 update_date = #{batchJobRequest.updateDate}
 WHERE
 job_seq_id = #{batchJobRequest.jobSeqId}
 AND
 polling_status = #{pollingStatus}
 </update>

</mapper>

Extension points

Sr. No. Description

(1) Set extended interface of BatchJobRequestRepositoryin namespace by FQCN.

(2) Add priority to ORDER clause.

(3) Do not change updated SQL.

4.3. Asynchronous execution (DB polling) | 121

4. Modifying Bean definition of async-batch-daemon.xml

Set extended interface created in (2) in batchJobRequestRepository.

async-batch-daemon.xml

 <!--(1) -->
<bean id="batchJobRequestRepository"
 class="org.mybatis.spring.mapper.MapperFactoryBean"

p:mapperInterface="org.terasoluna.batch.extend.repository.CustomizedBatchJobRequestRep
ository"
 p:sqlSessionFactory-ref="adminSqlSessionFactory" />

Extension points

Sr. No. Description

(1) Set extended interface of BatchJobRequestRepository in mapperInterface property by
FQCN.

4.3.4.1.2. Distributed processing by multiple processes using a group ID

Specify group ID with environment variable while starting AsyncBatchDaemon and narrow down the
target job.

1. Customizing Job-request-table

Add group ID column (group_id) to Job-request-table.

Adding group ID column (In case of PostgreSQL)

CREATE TABLE IF NOT EXISTS batch_job_request (
 job_seq_id bigserial PRIMARY KEY,
 job_name varchar(100) NOT NULL,
 job_parameter varchar(200),
 group_id varchar(10) NOT NULL,
 job_execution_id bigint,
 polling_status varchar(10) NOT NULL,
 create_date timestamp NOT NULL,
 update_date timestamp
);

2. Creating extended interface of BatchJobRequestRepository interface

◦ Same as Example of controlling job execution sequence by priority column

3. Definition of SQLMap which use customised table

Define SQL in SQLMap with the group ID as the extraction condition.

122 | 4.3. Asynchronous execution (DB polling)

SQLMap definition (CustomizedBatchJobRequestRepository.xml)

<!-- (1) -->
<mapper
namespace="org.terasoluna.batch.extend.repository.CustomizedBatchJobRequestRepository"
>

 <select id="find" resultType=
"org.terasoluna.batch.async.db.model.BatchJobRequest">
 SELECT
 job_seq_id AS jobSeqId,
 job_name AS jobName,
 job_parameter AS jobParameter,
 job_execution_id AS jobExecutionId,
 polling_status AS pollingStatus,
 create_date AS createDate,
 update_date AS updateDate
 FROM
 batch_job_request
 WHERE
 polling_status = 'INIT'
 AND
 group_id = #{groupId} <!--(2) -->
 ORDER BY
 job_seq_id ASC
 LIMIT #{pollingRowLimit}
 </select>

 <!-- omitted -->
</mapper>

Extension points

Sr. No. Description

(1) Set extended interface of BatchJobRequestRepository in namespace by FQCN.

(2) Add groupId to extraction conditions.

4. Modifying Bean definition of async-batch-daemon.xml

Set extended interface created in (2) in batchJobRequestRepository and set the group ID assigned by
environment variable in jobRequestPollTask as a query parameter.

4.3. Asynchronous execution (DB polling) | 123

async-batch-daemon.xml

 <!--(1) -->
<bean id="batchJobRequestRepository"
 class="org.mybatis.spring.mapper.MapperFactoryBean"

p:mapperInterface="org.terasoluna.batch.extend.repository.CustomizedBatchJobRequestRep
ository"
 p:sqlSessionFactory-ref="adminSqlSessionFactory" />

 <bean id="jobRequestPollTask"
 class="org.terasoluna.batch.async.db.JobRequestPollTask"
 c:transactionManager-ref="adminTransactionManager"
 c:jobOperator-ref="jobOperator"
 c:batchJobRequestRepository-ref="batchJobRequestRepository"
 c:daemonTaskExecutor-ref="daemonTaskExecutor"
 c:automaticJobRegistrar-ref="automaticJobRegistrar"
 p:optionalPollingQueryParams-ref="pollingQueryParam" /> <!-- (2) -->

 <bean id="pollingQueryParam"
 class="org.springframework.beans.factory.config.MapFactoryBean">
 <property name="sourceMap">
 <map>
 <entry key="groupId" value="${GROUP_ID}"/> <!-- (3) -->
 </map>
 </property>
 </bean>

Extension points

Sr. No. Description

(1) Set extended interface of BatchJobRequestRepository in mapperInterface property by
FQCN..

(2) Set Map defined in (3), in optionalPollingQueryParams property of JobRequestPollTask.

(3) Set the GROUP_ID given in the environment variable to the groupId of the query
parameter.

5. Set group ID in environment variable and start AsyncBatchDaemon.

Starting AsyncBatchDaemon

Set environment variables
$ export GROUP_ID=G1

Start AsyncBatchDaemon
$ java -cp dependency/* org.terasoluna.batch.async.db.AsyncBatchDaemon

124 | 4.3. Asynchronous execution (DB polling)

4.3.4.2. Customization of clock used in timestamp

The clock used in timestamp is fetched from systemDefaultZone by default.
However, there may be cases when you want to extend fetch condition of job request of cancelling
polling for specific time zone, to asynchronous batch daemon that is dependent on system date and
time and you want to implement test by specifying specific date and time and using a time zone
different from the system to be used. Therefore, in asynchronous execution, a function is provided
that can set customized clock as per the purpose.
When request fetched from job request table is not customized by default, only update_date of job
request table is affected when the clock is changed. The customization procedure of clock is as
follows. . Create a copy of async-batch-daemon.xml . Change file name to customized-async-batch-
daemon.xml . Modify Bean definition of customized-async-batch-daemon.xml . Activate the customized
AsyncBatchDaemon
For details, refer Start of asynchronous batch daemon The setting example for fixing date and time
and changing time zone is as follows. [source,xml] .META-INF/spring/customized-async-batch-
daemon.xml

<bean id="jobRequestPollTask"
 class="org.terasoluna.batch.async.db.JobRequestPollTask"
 c:transactionManager-ref="adminTransactionManager"
 c:jobOperator-ref="jobOperator"
 c:batchJobRequestRepository-ref="batchJobRequestRepository"
 c:daemonTaskExecutor-ref="daemonTaskExecutor"
 c:automaticJobRegistrar-ref="automaticJobRegistrar"
 p:clock-ref="clock" />　<!-- (1) -->

<!-- (2) -->
<bean id="clock" class="java.time.Clock" factory-method="fixed"
 c:fixedInstant="#{T(java.time.ZonedDateTime).parse('2016-12-31T16:00-
08:00[America/Los_Angeles]').toInstant()}"
 c:zone="#{T(java.time.ZoneId).of('PST', T(java.time.ZoneId).SHORT_IDS)}"/>

Explanation

Sr. No. Explanation

(1) Set Bean to be defined in (2) in clock property of JobRequestPollTask.

(2) Define Bean of java.time.Clock wherein date and time is fixed to 31 December 2016
16:00:00 and time zone is Los Angeles time.
Time zone ID of Los Angeles time is PST.

4.3.4.3. Multiple runnings

Asynchronous batch daemon is run on multiple servers for the following purposes.

• Enhanced availability

◦ Asynchronous batch job only needs to be executed on one of the servers, and eliminate the
situation that the job can not be started.

4.3. Asynchronous execution (DB polling) | 125

• Enhanced performance

◦ When batch processing load is to be distributed across multiple servers

• Effective use of resources

◦ When a specific job is to be distributed on a server with optimal resources when a variation
is observed in the server performance

▪ Equivalent to dividing a job node based on group ID shown in Customising Job-request-
table

An operational design must be adopted considering whether it can be used based on the viewpoints
given above.

Schematic diagram for multiple starts

When multiple asynchronous batch daemons fetch identical job request records

Since JobRequestPollTask performs exclusive control using optimistic locking, it
can execute the job of the record fetched by asynchronous batch daemon which
can update the polling status from INIT to POLLED. Other exclusive asynchronous
batch daemons fetch next job request record.

4.3.5. Appendix

4.3.5.1. About modularization of job definition

Although it is briefly explained in ApplicationContext configuration, following events can be
avoided by using AutomaticJobRegistrar.

• When same BeanID (BeanName) is used, Bean is overwritten and the job shows unintended
behaviour.

◦ Accordingly, there is a high risk of occurrence of unintended errors.

• Naming should be performed to make all Bean IDs in the job unique, to avoid these errors.

◦ As the number of jobs increases, it becomes difficult to manage and the possibility that
unnecessary troubles will occur increases.

An event when AutomaticJobRegistrar is not used is explained. Since the contents explained here
pose the issues given above, it is not used in asynchronous execution.

126 | 4.3. Asynchronous execution (DB polling)

Job1.xml

<!-- Reader -->
<!-- (1) -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"
 p:queryId="jp.terasoluna.batch.job.repository.EmployeeRepositoy.findAll"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<!-- Writer -->
<!-- (2) -->
<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['basedir']}/input/employee.csv">
 <property name="lineAggregator">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="invoiceNo,salesDate,productId,customerId,quant,price"/>
 </property>
 </bean>
 </property>
</bean>

<!-- Job -->
<batch:job id="job1" job-repository="jobRepository">
 <batch:step id="job1.step">
 <batch:tasklet transaction-manager="transactionManager">
 <batch:chunk reader="reader" writer="writer" commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

4.3. Asynchronous execution (DB polling) | 127

Job2.xml

<!-- Reader -->
<!-- (3) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['basedir']}/input/invoice.csv">
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="invoiceNo,salesDate,productId,customerId,quant,price"/>
 </property>
 <property name="fieldSetMapper" ref="invoiceFieldSetMapper"/>
 </bean>
 </property>
</bean>

<!-- Writer -->
<!-- (4) -->
<bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"
 p:statementId="jp.terasoluna.batch.job.repository.InvoiceRepository.create"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<!-- Job -->
<batch:job id="job2" job-repository="jobRepository">
 <batch:step id="job2.step">
 <batch:tasklet transaction-manager="transactionManager">
 <batch:chunk reader="reader" writer="writer" commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

128 | 4.3. Asynchronous execution (DB polling)

Definition wherein BeanId is overwritten

<bean id="automaticJobRegistrar"

class="org.springframework.batch.core.configuration.support.AutomaticJobRegistrar">
 <property name="applicationContextFactories">
 <bean
class="org.springframework.batch.core.configuration.support.ClasspathXmlApplicationCon
textsFactoryBean">
 <property name="resources">
 <list>
 <value>classpath:/META-INF/jobs/other/async/*.xml</value> <!--
(5) -->
 </list>
 </property>
 </bean>
 </property>
 <property name="jobLoader">
 <bean
class="org.springframework.batch.core.configuration.support.DefaultJobLoader"
 p:jobRegistry-ref="jobRegistry"/>
 </property>
</bean>

<bean
class="org.springframework.batch.core.configuration.support.JobRegistryBeanPostProcess
or"
 p:jobRegistry-ref="jobRegistry" />

<import resource="classpath:/META-INF/jobs/async/*.xml" /> <!-- (6) -->

List of setup points

Sr. No. Description

(1) In Job1, ItemReader which reads from the database is defined by a Bean ID - reader.

(2) In Job1, ItemWriter which writes in a file is defined by a Bean ID - writer.

(3) In Job2, ItemReader which reads from the file is defined by a Bean ID - reader.

(4) In Job2, ItemWriter which writes to a database is defined by a Bean ID - writer.

(5) AutomaticJobRegistrar is set so as to read job definitions other than target jobs.

(6) Use import of Spring and enable reading of target job definition.

In this case, if Job1.xml and Job2.xml are read in the sequence, reader and writer to be defined by
Job1.xml will be overwritten by Job2.xml definition.
As a result, when Job1 is executed, reader and writer of Job2 are used and intended processing
cannot be performed.

4.3. Asynchronous execution (DB polling) | 129

4.4. Asynchronous execution (Web container)

4.4.1. Overview

A method to execute the job asynchronously in Web container is explained.

The way to use this function is same in chunk model and tasklet model.

What is asynchronous execution of jobs by Web container

Web application that contains a job is deployed in a Web container and the job is executed based on
information of sent request.
Since one thread is allocated for each job execution and operation is run in parallel, it can be
executed independent of processes for other jobs and requests.

Function offered

TERASOLUNA Batch 5.x does not offer implementation for asynchronous execution (Web
container).
Only methods of implementation will be provided in this guideline.
This is because the start timing of the Web application is diverse such as HTTP / SOAP / MQ, and
hence it is determined that the implementation should be appropriately done by the user.

Usage premise

• A Web container is required besides the application.

• Besides implementation of job, required Web application and client are separately implemented
according to the operation requirements.

• Execution status and results of the job are entrusted to JobRepository. Further, a permanently
residing database is used instead of in-memory database to enable execution status and results
of job to be referred from JobRepository even after stopping Web container.

Usage scene

It is same as "Asynchronous execution (DB polling) - Overview".

Difference with asynchronous execution (DB polling)

On the architecture front, immediacy at the time of asynchronous execution and
presence or absence of request management table are different.
"Asynchronous execution (DB polling)" performs asynchronous execution of
multiple jobs registered in the request management table.
On the other hand, this function does not require request management table and
accepts asynchronous execution on the Web container instead.
It is suitable for a short batch which requires immediacy till the start of the
operation in order to execute the operation immediately by sending a Web
request.

4.4.2. Architecture

Asynchronous jobs by using this method are operated as applications (war) deployed on the Web

130 | 4.4. Asynchronous execution (Web container)

container, however, the job itself runs asynchronously (another thread) from the request
processing of Web container.

Sequence diagram of asynchronous execution (Web container)

Running a job

1. Web client requests Web container to execute the job.

2. JobController asks JobOperator of Spring Batch to start the execution of the job.

3. Execute the job asynchronously by using ThreadPoolTaskExecutor.

4. Return a job execution ID (job execution id) for uniquely identifying an executed target job.

5. JobController returns a response including job execution ID for the Web client.

6. Execute target job.

◦ Job results are reflected in JobRepository.

7. Job returns execution results. It cannot be notified directly to the client.

Confirm job execution results

8. Web client sends job execution ID and JobController to Web container.

9. JobController asks JobExplorer for execution results of job by using a job execution ID.

10. JobExplorer returns job execution results.

11. JobController returns a response for Web client.

4.4. Asynchronous execution (Web container) | 131

◦ Set Job execution ID in the response.

After receiving a request using Web container, operation is synchronised with the request
processing till job execution ID payout, however subsequent job execution is performed
asynchronously in a thread pool different from that of Web container.
As long as the query is not sent again in a request, it signifies that execution status of asynchronous
job cannot be detected on web client side.

Hence, the request should be sent once at the time of "running a job" on the Web client side during
one job execution. When "confirmation of results" is necessary, request must be sent once again to
the Web container.
Abnormality detection which looks different from first "running a job" will be explained later in
About detection of abnormality occurrence at the time of running a job.

Job execution status can be checked by referring direct RDBMS, by using
JobRepository and JobExplorer. For details of the function which refer to job
execution status and results, refer Job management.

About handling job execution ID (job execution id)

Job execution ID generates a different sequence value for each job even though job
and job parameters are identical.
Job execution ID accepted by sending a request is persisted in external RDBMS by
JobRepository.
However, when this ID is lost due to failure of Web client, specifying or tracking
job execution status becomes difficult.
Hence, adequate preparations must be made on Web client side to cope with loss
of job execution ID like logging the job execution ID returned as a response.

4.4.2.1. About detection of abnormality occurrence at the time of running a job

After sending a job run request from Web client, abnormality detection appearance varies along
with job execution ID payout.

• Abnormality can be detected immediately by the response at the time of running a job

◦ Job to be activated does not exist.

◦ Invalid job parameter format.

• After running a job, queries regarding job execution status and results for Web container are
necessary

◦ Job execution status

◦ Job start failure due to depletion of thread pool used in asynchronous job execution

132 | 4.4. Asynchronous execution (Web container)

"Job running error" can be detected as an exception occurring in Spring MVC
controller. Since the explanation is omitted here, refer Implementation of
exception handling of TERASOLUNA Server 5.x Development Guideline described
separately.

Further, input check of the request used as a job parameter is performed in the
Spring MVC controller as required.
For basic implementation methods, refer Input check of TERASOLUNA Server 5.x
Development Guideline.

Job start failure occurring due to depletion of thread pool cannot be captured at the
time of running a job.

Job start failure due to depletion of thread pool is not generated from JobOperator,
hence it must be checked separately. One of the methods of confirmation include
using JobExplorer while checking execution status of job and checking whether the
following conditions are satisfied.

• Status is FAILED

• Exception stack trace of org.springframework.core.task.TaskRejectedException
is recorded in jobExecution.getExitStatus().getExitDescription().

4.4.2.2. Application configuration of asynchronous execution (Web container)

The function is same as "Asynchronous execution (DB polling)" and use async and
AutomaticJobRegistrar of Spring profile as a configuration specific to asynchronous execution.

On the other hand, prior knowledge and some specific settings are required in order to use these
functions asynchronously (Web container). Refer "ApplicationContext configuration".
For configuration methods of basic async profile and AutomaticJobRegistrar, "How to implement
applications using asynchronous execution (Web container)" will be described later.

4.4.2.2.1. ApplicationContext configuration

As described above, multiple application modules are included as application configuration of
asynchronous execution (Web container).
It is necessary to understand respective application contexts, types of Bean definitions and their
relationships.

4.4. Asynchronous execution (Web container) | 133

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebServiceDetail/REST.html#resthowtouseexceptionhandling
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebServiceDetail/REST.html#resthowtouseexceptionhandling
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html

ApplicationContext configuration

Bean definition file configuration

ApplicationContext of batch application is incorporated in the context, in ApplicationContext during
asynchronous execution (Web container).
Individual job contexts are modularised from Web context using AutomaticJobRegistrar and it acts
as a sub-context of Web context.

Bean definition file which constitute respective contexts are explained.

List of Bean definition files

Sr. No. Description

(1) Common Bean definition file.
It acts as a parent context in the application and is uniquely shared among jobs acting as
sub-contexts.

(2) Bean definition file which is always imported from job Bean definitions.
If Spring profile is async specified at the time of asynchronous execution, launch-
context.xml of (1) is not read.

(3) Bean definition file created for each job.
It is modularized by AutomaticJobRegistrar and are used as respective independent sub-
contexts in the application.

134 | 4.4. Asynchronous execution (Web container)

Sr. No. Description

(4) It is read from DispatcherServlet.
Define the Beans unique to asynchronous execution such as AutomaticJobRegistrar
which performs modularization of job Bean definition and taskExecutor which is a
thread pool used in asynchronous and parallel execution of jobs.
Further, in asynchronous execution, launch-context.xml of (1) is imported directly
and uniquely shared as parent contexts.

(5) It acts as a parent context shared within the Web application by using
ContextLoaderListener.

4.4.3. How to use

Here, explanation is given using TERASOLUNA Server Framework for Java (5.x), as an
implementation example of Web application.
Kindly remember that only explanation is offered and TERASOLUNA Server 5.x is not a necessary
requirement of asynchronous execution (Web container).

4.4.3.1. Overview of implementation of application by asynchronous execution (Web
container)

Explanation is given based on following configuration.

• Web application project and batch application project are independent and a batch application
is referred from a web application.

◦ war file generated from Web application project contains jar file generated from batch
application project

Implementation of asynchronous execution is performed in accordance with Architecture wherein
Spring MVC controller in the Web application starts the job by using JobOperator.

About isolation of Web/batch application project

Final deliverable of application build is a war file of Web application, however, a
development project should be implemented by separating Web/batch
applications.
Since it is a library which can be operated by a batch application alone, it helps in
identifying work boundary and library dependency besides making the
development project testing easier to implement.

Web/batch development is explained now assuming the use of 2 components below.

• Batch application project by TERASOLUNA Batch 5.x

• Web application project by TERASOLUNA Server 5.x

For how to create a batch application project and how to implement a basic job, refer "How to
create a project", "Creation of tasklet model job", "Creation of chunk model job".

Here, we will focus on starting a batch application from a Web application.

4.4. Asynchronous execution (Web container) | 135

Here, explanation is given by creating a batch application project, by using Maven
archetype:generate.

How to create a job project

Name Value

groupId org.terasoluna.batch.sample

artifactId asyncbatch

version 1.0-SNAPSHOT

package org.terasoluna.batch.sample

A job registered from the beginning for a blank project is used for convenience of explanation.

Job used for explanation

Name Description

Job name job01

Job parameter param1=value1

Precautions for asynchronous execution (Web container) job design

Individual jobs are completed in a short period of time as a characteristic of
asynchronous execution (Web container) and are operated in a stateless manner
on the Web container.
Further, it is necessary to build a job definition with only a single step to avoid
complexity and it is desirable not to define flow branching by using exit codes of
step and parallel/multiple processing.

Create a Web application as a state wherein a jar file including a job implementation can be
created.

Implementation of Web application

How to implement a Web application is explained by using a blank project offered by TERASOLUNA
Server 5.x. For details, refer TERASOLUNA Server 5.x Development Guideline Creating a
development project for Web application.

Here, similar to asynchronous execution application project, it is assumed that the project is
created with the following values.

Example of Web container project creation

Name Value

groupId org.terasoluna.batch.sample

artifactId asyncapp

version 1.0-SNAPSHOT

package org.terasoluna.batch.sample

136 | 4.4. Asynchronous execution (Web container)

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ImplementationAtEachLayer/CreateWebApplicationProject.html
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ImplementationAtEachLayer/CreateWebApplicationProject.html

About naming of groupId

Although naming a project is optional, when a batch application as a Maven
multiproject is considered as a sub-module, it is easy to manage if groupId is
integrated.
Here, groupId of both is considered as org.terasoluna.batch.sample.

4.4.3.2. Various settings

Include batch application as a part of Web application

Edit pom.xml and include batch application as a part of Web application.

This procedure is unnecessary if you register a batch application as jar in NEXUS
or Maven local repository and make it as a separate project from the web
application.
However, be aware that the target built by Maven is a different project, and even if
you modify the batch application, it will not be reflected when building the web
application.

Directory structure

asyncapp/pom.xml

<project>
 <!-- omitted -->
 <modules>
 <module>asyncapp-domain</module>
 <module>asyncapp-env</module>
 <module>asyncapp-initdb</module>
 <module>asyncapp-web</module>
 <module>asyncapp-selenium</module>
 <module>asyncbatch</module> <!-- (1) -->
 </modules>
</project>

4.4. Asynchronous execution (Web container) | 137

asyncapp/asyncbatch/pom.xml

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.terasoluna.batch.sample</groupId> <!-- (2) -->
 <artifactId>asyncbatch</artifactId>
 <version>1.0-SNAPSHOT</version> <!-- (2) -->
 <!-- (1) -->
 <parent>
 <groupId>org.terasoluna.batch.sample</groupId>
 <artifactId>asyncapp</artifactId>
 <version>1.0-SNAPSHOT</version>
 <relativePath>../pom.xml</relativePath>
 </parent>
 <!-- omitted -->
</project>

Deleted / added contents

Sr. No. Description

(1) Add settings for considering the Web application as a parent and batch application as a
child.

(2) Delete unnecessary description with deletion of child or sub-module.

Addition of dependent library

Add a batch application as a dependent library of Web application.

asyncapp/async-web/pom.xml

<project>
 <!-- omitted -->
 <dependencies>
 <!-- (1) -->
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>asyncbatch</artifactId>
 <version>${project.version}</version>
 </dependency>
 <!-- omitted -->
 </dependencies>
 <!-- omitted -->
</project>

Details added

Sr. No. Description

(1) Add a batch application as a dependent library of Web application.

138 | 4.4. Asynchronous execution (Web container)

4.4.3.3. Implementation of Web application

Here, a RESTful Web service is created as a Web application using TERASOLUNA Server 5.x
Development Guideline as a reference below.

Setting for enabling Spring MVC component which is necessary for RESTful Web Service

4.4.3.3.1. Web application settings

At first, add, delete and edit various configuration files from the blank project of Web application.

For the explanation, an implementation which use RESTful Web Service as an
implementation status of batch application is given.
Procedure will be same even when conventional Web application (Servlet/JSP) or
SOAP is used. Read accordingly.

Bean definition file to be added/deleted from a blank project

Bean definition file to be added/deleted

Sr. No. Description

(1) Since (2) is created, delete spring-mvc.xml as it is not required.

(2) Create spring-mvc-rest.xml for RESTful Web Service. Description example of the
required definition is shown below.

Description example of asyncapp/asyncapp-web/src/main/resources/META-INF/spring/spring-mvc-
rest.xml

<!-- omitted -->
<!-- (1) -->
<import resource="classpath:META-INF/spring/launch-context.xml"/>

<bean id="jsonMessageConverter"

class="org.springframework.http.converter.json.MappingJackson2HttpMessageConverter"
 p:objectMapper-ref="objectMapper"/>

<bean id="objectMapper"
 class="org.springframework.http.converter.json.Jackson2ObjectMapperFactoryBean">
 <property name="dateFormat">
 <bean class="com.fasterxml.jackson.databind.util.StdDateFormat"/>
 </property>

4.4. Asynchronous execution (Web container) | 139

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebServiceDetail/REST.html

</bean>

<mvc:annotation-driven>
 <mvc:message-converters register-defaults="false">
 <ref bean="jsonMessageConverter"/>
 </mvc:message-converters>
</mvc:annotation-driven>

<mvc:default-servlet-handler/>

<!-- (2) -->
<context:component-scan base-package="org.terasoluna.batch.sample.app.api"/>

<!-- (3) -->
<bean
class="org.springframework.batch.core.configuration.support.AutomaticJobRegistrar">
 <property name="applicationContextFactories">
 <bean
class="org.springframework.batch.core.configuration.support.ClasspathXmlApplicationCon
textsFactoryBean">
 <property name="resources">
 <list>
 <value>classpath:/META-INF/jobs/**/*.xml</value>
 </list>
 </property>
 </bean>
 </property>
 <property name="jobLoader">
 <bean
class="org.springframework.batch.core.configuration.support.DefaultJobLoader"
 p:jobRegistry-ref="jobRegistry"/>
 </property>
</bean>

<!-- (4) -->
<task:executor id="taskExecutor" pool-size="3" queue-capacity="10"/>

<!-- (5) -->
<bean id="jobLauncher"
class="org.springframework.batch.core.launch.support.SimpleJobLauncher"
 p:jobRepository-ref="jobRepository"
 p:taskExecutor-ref="taskExecutor"/>
<!-- omitted -->

140 | 4.4. Asynchronous execution (Web container)

Description example of asyncapp/asyncapp-web/src/main/webapp/WEB-INF/web.xml

<!-- omitted -->
<servlet>
 <servlet-name>restApiServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <!-- (6) -->
 <param-value>classpath*:META-INF/spring/spring-mvc-rest.xml</param-value>
 </init-param>
 <!-- (7) -->
 <init-param>
 <param-name>spring.profiles.active</param-name>
 <param-value>async</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>restApiServlet</servlet-name>
 <url-pattern>/api/v1/*</url-pattern>
</servlet-mapping>
<!-- omitted -->

RESTful Web Service validation example

Sr. No. Description

(1) Import launch-context.xml which is in the batch application and incorporate required
Bean definition.

(2) Describe package for dynamically scanning the controller.

(3) Describe a Bean definition of AutomaticJobRegistrar which dynamically loads as a child
or sub context by modularizing each Bean definition file.

(4) Define TaskExecutor which executes the job asynchronously.
Asynchronous execution can be performed by setting AsyncTaskExecutor implementation
class in TaskExecutor of JobLauncher. Use ThreadPoolTaskExecutor which is one of the
components of AsyncTaskExecutor implementation class.

Further, multiplicity of threads which can be operated in parallel can be specified.
In this example, 3 threads are assigned to the job execution and requests exceeding this
number are queued upto 10. Queued job is in "not started" state, however REST request
is considered to be successful. In addition,
org.springframework.core.task.TaskRejectedException occurs when request for a job
exceeds the upper limit of queuing and the job start request is rejected.

(5) Override jobLauncher defined in launch-context.xml to enable taskExecutor of (4).

(6) Specify spring-mvc-rest.xml described above as a Bean definition
read by DispatcherServlet.

4.4. Asynchronous execution (Web container) | 141

Sr. No. Description

(7) Specify async which shows an asynchronous batch, as a profile of Spring Framework.

When async profile is not specified

In this case, a Bean defined in launch-context.xml which should be shared across
Web applications is duplicated for each job.
Even in case of duplication, since the operation takes place at the functional level,
it is difficult to notice an error and it may result in unexpected resource
exhaustion and performance degradation. Must be specified.

Thread pool sizing

When the upper limit of thread pool is in excess, an enormous amount of jobs run
in parallel resulting in deterioration of entire thread pool. Sizing should be done
and appropriate upper value must be determined.
Besides thread pool of asynchronous execution, request thread of Web container
and other applications working in the same enclosure must also be considered.

Further, a separate request must be sent from Web client for checking occurrence
of TaskRejectException due to thread pool exhaustion and its re-execution. Hence,
queue-capacity which waits for job to start must be set at the time of thread pool
exhaustion.

Implementation of RESTful Web Service API

Here, "Running a job" and "Job status check" are defined as 2 examples of requests used in REST
API.

REST API Definition example

Sr.
No.

API Path HTTP
method

Request/Res
ponse

Message
format

Message details

(1) Running a
job

/api/v1/job/Job name POST Request JSON Job parameter

Response JSON Job execution ID
Job name
Message

(2) Job execution
status check

/api/v1/job/Job
execution ID

GET Request N/A N/A

Response JSON Job execution ID
Job name
Job execution
status
Job exit code
Step execution ID
Step name
Step exit code

142 | 4.4. Asynchronous execution (Web container)

4.4.3.3.2. Implementation of JavaBeans used in Controller

Create following 3 classes that are returned to REST client as JSON message.

• Job run operation JobOperationResource

• Job execution status JobExecutionResource

• Step execution status StepExecutionResource

These classes are implementations for reference except for job execution ID (job execution id) of
JobOperationResource and implementation of field is optional.

Implementation example of job run operation information

// asyncapp/asyncapp-
web/src/main/java/org/terasoluna/batch/sample/app/api/jobinfo/JobOperationResource.jav
a
package org.terasoluna.batch.sample.app.api.jobinfo;

public class JobOperationResource {

 private String jobName = null;

 private String jobParams = null;

 private Long jobExecutionId = null;

 private String errorMessage = null;

 private Exception error = null;

 // Getter and setter are omitted.
}

4.4. Asynchronous execution (Web container) | 143

Implementation example of job execution information

// asyncapp/asyncapp-
web/src/main/java/org/terasoluna/batch/sample/app/api/jobinfo/JobExecutionResource.jav
a
package org.terasoluna.batch.sample.app.api.jobinfo;

// omitted.

public class JobExecutionResource {

 private Long jobExecutionId = null;

 private String jobName = null;

 private Long stepExecutionId = null;

 private String stepName = null;

 private List<StepExecutionResource> stepExecutions = new ArrayList<>();

 private String status = null;

 private String exitStatus = null;

 private String errorMessage;

 private List<String> failureExceptions = new ArrayList<>();

 // Getter and setter are omitted.
}

144 | 4.4. Asynchronous execution (Web container)

Implementation example of step execution information

// asyncapp/asyncapp-
web/src/main/java/org/terasoluna/batch/sample/app/api/jobinfo/StepExecutionResource.ja
va
package org.terasoluna.batch.sample.app.api.jobinfo;

public class StepExecutionResource {

 private Long stepExecutionId = null;

 private String stepName = null;

 private String status = null;

 private List<String> failureExceptions = new ArrayList<>();

 // Getter and setter are omitted.
}

4.4.3.3.3. Implementation of controller

A controller of RESTful Web Service is implemented by using @RestController.
In order to simplify, JobOperator is injected in the controller and the jobs are run and execution
statuses are fetched. Of course, JobOperator can also be started by using Service from the controller
in accordance with TERASOLUNA Server 5.x.

About job parameters that are passed at the time of running a job

The job parameter passed in the second argument of JobOperator#start() at
running a job is String. When there are multiple job parameters, they should be
separated by using a comma unlike CommandLineJobRunner of synchronous
execution. Basically the format is as below.
{Job parameter 1}={Value 1},{Job parameter 2}={Value 2},…

This is same as the method of specifying job parameters in "Asynchronous
execution (DB polling)".

Example of implementing a controller

// asyncapp/asyncapp-
web/src/main/java/org/terasoluna/batch/sample/app/api/JobController.java
package org.terasoluna.batch.sample.app.api;

// omitted.

// (1)
@RequestMapping("job")
@RestController
public class JobController {

4.4. Asynchronous execution (Web container) | 145

 // (2)
 @Inject
 JobOperator jobOperator;

 // (2)
 @Inject
 JobExplorer jobExplorer;

 @RequestMapping(value = "{jobName}", method = RequestMethod.POST)
 public ResponseEntity<JobOperationResource> launch(@PathVariable("jobName") String
jobName,
 @RequestBody JobOperationResource requestResource) {

 JobOperationResource responseResource = new JobOperationResource();
 responseResource.setJobName(jobName);
 try {
 // (3)
 Long jobExecutionId = jobOperator.start(jobName, requestResource
.getJobParams());
 responseResource.setJobExecutionId(jobExecutionId);
 return ResponseEntity.ok().body(responseResource);
 } catch (NoSuchJobException | JobInstanceAlreadyExistsException |
JobParametersInvalidException e) {
 responseResource.setError(e);
 return ResponseEntity.badRequest().body(responseResource);
 }
 }

 @RequestMapping(value = "{jobExecutionId}", method = RequestMethod.GET)
 @ResponseStatus(HttpStatus.OK)
 public JobExecutionResource getJob(@PathVariable("jobExecutionId") Long
jobExecutionId) {

 JobExecutionResource responseResource = new JobExecutionResource();
 responseResource.setJobExecutionId(jobExecutionId);

 // (4)
 JobExecution jobExecution = jobExplorer.getJobExecution(jobExecutionId);

 if (jobExecution == null) {
 responseResource.setErrorMessage("Job execution not found.");
 } else {
 mappingExecutionInfo(jobExecution, responseResource);
 }

 return responseResource;
 }

 private void mappingExecutionInfo(JobExecution src, JobExecutionResource dest) {
 dest.setJobName(src.getJobInstance().getJobName());

146 | 4.4. Asynchronous execution (Web container)

 for (StepExecution se : src.getStepExecutions()) {
 StepExecutionResource ser = new StepExecutionResource();
 ser.setStepExecutionId(se.getId());
 ser.setStepName(se.getStepName());
 ser.setStatus(se.getStatus().toString());
 for (Throwable th : se.getFailureExceptions()) {
 ser.getFailureExceptions().add(th.toString());
 }
 dest.getStepExecutions().add(ser);
 }
 dest.setStatus(src.getStatus().toString());
 dest.setExitStatus(src.getExitStatus().toString());
 }
}

Implementation of controller

Sr. No. Description

(1) Specify @RestController. Further, when servlet mapping of web.xml is done by using
@RequestMapping("job"), base path of REST API is contextName/api/v1/job/.

(2) Describe field injections of JobOperator and JobExplorer.

(3) Use JobOperator and start a new asynchronous job.
Receive job execution ID as a return value and return to REST client.

(4) Use JobExplorer and fetch job execution status (JobExecution) based on job execution ID.
Return it to REST client after converting it to a pre-designed message.

4.4.3.3.4. Integration of Web/batch application module setting

Batch application module (asyncbatch) operates as a stand-alone application. Hence, batch
application module (asyncbatch) consists of settings which are in conflict and overlapping with
settings of Web application module (asyncapp-web). These settings must be integrated as required.

1. Integration of log configuration file logback.xml
When multiple Logback definition files are defined in Web/batch, they do not work
appropriately.
The contents of asyncbatch/src/main/resources/logback.xml are integrated into same file in
asyncapp-env/src/main/resources/ and then the file is deleted.

2. Data source and MyBatis configuration file are not integrated
Definitions of data source and MyBatis configuration file are not integrated between Web/batch
since the definition of application context is independent due to following relation.

◦ asyncbatch module of the batch is defined in the servlet as a closed context.

◦ asyncapp-domain and asyncapp-env modules of Web are defined as contexts used by entire
application.

4.4. Asynchronous execution (Web container) | 147

Cross-reference of data source and MyBatis settings by Web and batch modules

Since the scope of context for Web and batch modules is different, data source,
MyBatis settings and Mapper interface cannot be referred especially from Web
module.
Since initialization of RDBMS schema is also carried out independently based on
the different settings of respective modules, adequate care must be taken not to
perform unintended initialization due to mutual interference.

CSRF countermeasures specific to REST controller

When a request is sent for REST controller in the initialization settings of Web
blank project, it results in a CSRF error and execution of job is rejected. Hence,
explanation is given here assuming that CSRF countermeasures are disabled by the
following method.

CSRF countermeasures

Web application created here is not published on the internet and CSRF
countermeasures are disabled on the premise that REST request is not sent from a
third party who can exploit CSRF as a means of attack. Please note that necessity
may differ in the actual Web application depending on the operating environment.

4.4.3.3.5. Build

Build Maven command and create a war file.

148 | 4.4. Asynchronous execution (Web container)

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebServiceDetail/REST.html#csrf

$ cd asyncapp
$ ls
asyncbatch/ asyncapp-web/ pom.xml
$ mvn clean package
[INFO] Scanning for projects...
[INFO] --
[INFO] Reactor Build Order:
[INFO]
[INFO] TERASOLUNA Server Framework for Java (5.x) Web Blank Multi Project (MyBatis3)
[INFO] TERASOLUNA Batch Framework for Java (5.x) Blank Project
[INFO] asyncapp-web
[INFO]
[INFO] --
[INFO] Building TERASOLUNA Server Framework for Java (5.x) Web Blank Multi Project
(MyBatis3) 1.0-SNAPSHOT
[INFO] --

(omitted)

[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] TERASOLUNA Server Framework for Java (5.x) Web Blank Multi Project (MyBatis3)
SUCCESS [0.226 s]
[INFO] TERASOLUNA Batch Framework for Java (5.x) Blank Project SUCCESS [6.481s]
[INFO] asyncapp-web SUCCESS [5.400 s]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 12.597 s
[INFO] Finished at: 2017-02-10T22:32:43+09:00
[INFO] Final Memory: 38M/250M
[INFO] --
$

4.4.3.3.6. Deploy

Start a Web container like Tomcat and deploy war file generated in the build. Detailed process is
omitted.

4.4.3.4. Job start and confirmation of execution results using REST Client

Here, curl command is used as a REST client and an asynchronous job is started.

4.4. Asynchronous execution (Web container) | 149

$ curl -v \
 -H "Accept: application/json" -H "Content-type: application/json" \
 -d '{"jobParams": "param1=value1"}' \
 http://localhost:8080/asyncapp-web/api/v1/job/job01
* timeout on name lookup is not supported
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8088 (#0)
> POST /asyncapp-web/api/v1/job/job01 HTTP/1.1
> Host: localhost:8088
> User-Agent: curl/7.51.0
> Accept: application/json
> Content-type: application/json
> Content-Length: 30
>
* upload completely sent off: 30 out of 30 bytes
< HTTP/1.1 200
< X-Track: 0267db93977b4552880a4704cf3e4565
< Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
< Date: Fri, 10 Feb 2017 13:55:46 GMT
<
{"jobName":"job01","jobParams":null,"jobExecutionId":3,"error":null,"errorMessag
e":null}* Curl_http_done: called premature == 0
* Connection #0 to host localhost left intact
$

From the above, it can be confirmed that job is executed with a job execution ID jobExecutionId =
3.
Subsequently, job execution results are fetched by using job execution ID.

150 | 4.4. Asynchronous execution (Web container)

$ curl -v http://localhost:8080/asyncapp-web/api/v1/job/3
* timeout on name lookup is not supported
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8088 (#0)
> GET /asyncapp-web/api/v1/job/3 HTTP/1.1
> Host: localhost:8088
> User-Agent: curl/7.51.0
> Accept: */*
>
< HTTP/1.1 200
< X-Track: 7d94bf4d383745efb20cbf37cb6a8e13
< Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
< Date: Fri, 10 Feb 2017 14:07:44 GMT
<
{"jobExecutionId":3,"jobName":"job01","stepExecutions":[{"stepExecutionId":5,"st
epName":"job01.step01","status":"COMPLETED","failureExceptions":[]}],"status":"C
OMPLETED","exitStatus":"exitCode=COMPLETED;exitDescription=","errorMessage":null
}* Curl_http_done: called premature == 0
* Connection #0 to host localhost left intact
$

Since exitCode=COMPLETED, it can be confirmed that the job is completed successfully.

When execution results of curl are to be determined by a shell script etc

In the example above, it is displayed upto the response message using REST API.
When only HTTP status is to be confirmed by curl command, HTTP status can be
displayed in standard output by considering curl -s URL -o /dev/null -w "%
{http_code}\n".
However, since job execution ID need to analyse JSON of response body part, REST
client application must be created as required.

4.4.4. How to extend

4.4.4.1. Stopping and restarting jobs

It is necessary to stop and restart asynchronous jobs from the multiple jobs that are being executed.
Further, when jobs of identical names are running in parallel, it is necessary to target only those
jobs with the issues. Hence, job execution to be targeted must be identified and the status of the job
must be confirmed.
When this premise is met, an implementation for stopping and restarting asynchronous executions
is explained here.

Further, a method to add job stopping (stop) and restarting (restart) is explained for JobController
of Implementation of controller.

4.4. Asynchronous execution (Web container) | 151

Job stopping and restarting can also be implemented without using JobOperator.
For details, refer Job management and identify a method suitable for this
objective.

Implementation example of stop and restart

// asyncapp/asyncapp-
web/src/main/java/org/terasoluna/batch/sample/app/api/JobController.java
package org.terasoluna.batch.sample.app.api;

// omitted.

@RequestMapping("job")
@RestController
public class JobController {

 // omitted.

 @RequestMapping(value = "stop/{jobExecutionId}", method = RequestMethod.PUT)
 @Deprecated
 public ResponseEntity<JobOperationResource> stop(
 @PathVariable("jobExecutionId") Long jobExecutionId) {

 JobOperationResource responseResource = new JobOperationResource();
 responseResource.setJobExecutionId(jobExecutionId);
 boolean result = false;
 try {
 // (1)
 result = jobOperator.stop(jobExecutionId);
 if (!result) {
 responseResource.setErrorMessage("stop failed.");
 return ResponseEntity.badRequest().body(responseResource);
 }
 return ResponseEntity.ok().body(responseResource);
 } catch (NoSuchJobExecutionException | JobExecutionNotRunningException e) {
 responseResource.setError(e);
 return ResponseEntity.badRequest().body(responseResource);
 }
 }

 @RequestMapping(value = "restart/{jobExecutionId}",
 method = RequestMethod.PUT)
 @Deprecated
 public ResponseEntity<JobOperationResource> restart(
 @PathVariable("jobExecutionId") Long jobExecutionId) {

 JobOperationResource responseResource = new JobOperationResource();
 responseResource.setJobExecutionId(jobExecutionId);
 try {
 // (2)

152 | 4.4. Asynchronous execution (Web container)

 Long id = jobOperator.restart(jobExecutionId);
 responseResource.setJobExecutionId(id);
 return ResponseEntity.ok().body(responseResource);
 } catch (JobInstanceAlreadyCompleteException |
 NoSuchJobExecutionException | NoSuchJobException |
 JobRestartException | JobParametersInvalidException e) {
 responseResource.setErrorMessage(e.getMessage());
 return ResponseEntity.badRequest().body(responseResource);
 }
 }

 // omitted.
}

Implementation example of stop / restart using controller

Sr. No. Description

(1) Specify "stop" for job being executed by calling JobOperator#stop().

(2) Re-execute from the step where the job has terminated abnormally or stopped by calling
JobOperator#restart().

4.4.4.2. Multiple running

Multiple running signify that a Web container is started for multiple times and waits for respective
job requests.

Execution of asynchronous jobs is controlled by external RDBMS so as to connect to each
application. By sharing an external RDBMS, it is possible to wait for an asynchronous job to be
started across the same enclosure or another enclosure.

Applications include load balancing and redundancy for specific jobs. However, as described in
Implementation of Web application, these effects cannot be obtained easily just by starting multiple
Web containers or enhancing parallel operations. Sometimes measures similar to a general Web
application need to be taken in order to obtain the effect. An example is given below.

• One request processing operates in a stateless manner according to the characteristics of web
application, however, asynchronous execution of batch is likely to have a reduced failure
tolerance if it is not designed in combination with job start and confirmation of results.
For example, even when Web container for starting a job is made redundant, it is difficult to
confirm the progress and results of the job when the job execution ID is lost after starting a job
due to failure on the client side.

• A function to distribute request destinations on the client side must be implemented and a load
balancer must be introduced in order to distribute the load on multiple Web containers.

In this way, adequacy of multiple starts cannot be necessarily determined. Hence, using load
balancer and reviewing a control method to send requests by Web client should be considered
based on the purpose and use. A design which does not degrade the performance and fault
tolerance of the asynchronous execution application is required.

4.4. Asynchronous execution (Web container) | 153

4.5. Listener

4.5.1. Overview

A listener is an interface for inserting processing before and after executing a job or a step.

Since this function works differently for chunk model and tasket model, respective explanations
are given.

A listener consists of multiple interfaces, respective roles are explained here. Subsequently, how to
set and implement a listener is explained.

4.5.1.1. Types of listener

A lot of listener interfaces are defined in Spring Batch. Not everything is explained here, however,
we will focus on the items with high usage.

A listener is roughly divided into 2 types.

JobListener

An interface to insert the processing for execution of the job

StepListener

An interface to insert the processing for execution of the step

About JobListener

An interface called JobListener does not exist in Spring Batch. It is conveniently
described in this guideline for the comparison with StepListener.
Java Batch(jBatch) has an interface called javax.batch.api.listener.JobListener, so
care should be taken to avoid mistakes at the time of implementation. Further,
StepListener also consists of interface with same name but different signature
(javax.batch.api.listener.StepListener), so it is necessary to take adequate
precautions.

4.5.1.1.1. JobListener

JobListener interface consists of only one JobExecutionListener.

JobExecutionListener

Process is inserted prior to starting a job and after terminating a job.

JobExecutionListener interface

public interface JobExecutionListener {
 void beforeJob(JobExecution jobExecution);
 void afterJob(JobExecution jobExecution);
}

154 | 4.5. Listener

4.5.1.1.2. StepListener

There are many types of interface of StepListener as below.

StepListener

Marker interfaces of various listeners will be introduced later.

StepExecutionListener

Inserts process before and after step execution.

StepExecutionListener interface

public interface StepExecutionListener extends StepListener {
 void beforeStep(StepExecution stepExecution);
 ExitStatus afterStep(StepExecution stepExecution);
}

ChunkListener

A process is inserted before and after processing one chunk and when an error occurs.

ChunkListener interface

public interface ChunkListener extends StepListener {
 static final String ROLLBACK_EXCEPTION_KEY = "sb_rollback_exception";
 void beforeChunk(ChunkContext context);
 void afterChunk(ChunkContext context);
 void afterChunkError(ChunkContext context);
}

Uses of ROLLBACK_EXCEPTION_KEY

It is used when the exception occurred is to be fetched by afterChunkError method.
If an error occurs during chunk process, Spring Batch uses sb_rollback_exception
key in ChunkContext to call ChunkListener after storing the exception which can be
accessed as below.

Usage example

public void afterChunkError(ChunkContext context) {
 logger.error("Exception occurred while chunk. [context:{}]",
context,
 context.getAttribute(ChunkListener.
ROLLBACK_EXCEPTION_KEY));
}

For exception handling, refer Exception handling using ChunkListener interface

ItemReadListener

Inserts a process before and after ItemReader fetches one data record and when an error occurs.

4.5. Listener | 155

ItemReadListener interface

public interface ItemReadListener<T> extends StepListener {
 void beforeRead();
 void afterRead(T item);
 void onReadError(Exception ex);
}

ItemProcessListener

Inserts a process before and after ItemProcessor processes one data record and when an error
occurs.

ItemProcessListener interface

public interface ItemProcessListener<T, S> extends StepListener {
 void beforeProcess(T item);
 void afterProcess(T item, S result);
 void onProcessError(T item, Exception e);
}

ItemWriteListener

Inserts a process before and after ItemWriter outputs one chunk and when an error occurs.

ItemWriteListener interface

public interface ItemWriteListener<S> extends StepListener {
 void beforeWrite(List<? extends S> items);
 void afterWrite(List<? extends S> items);
 void onWriteError(Exception exception, List<? extends S> items);
}

This guideline does not explain following listeners.

• Retry type listener

• Skip type listener

These listeners are intended to be used for exception handling, however, the policy
of these guidelines is not to perform exception handling using these listeners. For
details, refer Exception handling.

4.5.2. How to use

Explanation is given about how to implement and set a listener.

4.5.2.1. Implementation of a listener

Explanation is given about how to implement and set a listener.

156 | 4.5. Listener

1. Implement the listener interface with implements.

2. Implement components with method-based annotation.

The selection of type of implementation is based on the role of listener. Criteria will be described
later.

4.5.2.1.1. When an interface is to be implemented

Various listener interfaces are implemented by using implements. Multiple interfaces can be
implemented at the same time based on requirement. Implementation example is shown below.

Implementation example for JobExecutionListener

@Component
public class JobExecutionLoggingListener implements JobExecutionListener { // (1)

 private static final Logger logger =
 LoggerFactory.getLogger(JobExecutionLoggingListener.class);

 @Override
 public void beforeJob(JobExecution jobExecution) { // (2)
 logger.info("job started. [JobName:{}]", jobExecution.getJobInstance
().getJobName());
 }

 @Override
 public void afterJob(JobExecution jobExecution) { // (3)

 logger.info("job finished.[JobName:{}][ExitStatus:{}]", jobExecution
.getJobInstance().getJobName(),
 jobExecution.getExitStatus().getExitCode());
 }
}

4.5. Listener | 157

Configuration example of listener

<batch:job id="chunkJobWithListener" job-repository="jobRepository">
 <batch:step id="chunkJobWithListener.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" processor="processor"
 writer="writer" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="loggingEachProcessInStepListener"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="jobExecutionLoggingListener"/> <!-- (4) -->
 </batch:listeners>
 </batch:job>

Description

Sr. No. Description

(1) Implement JobExecutionListener using implements.

(2) Implement beforeJob method defined by JobExecutionListener.
In this example, job start log is output.

(3) Implement afterJob method defined by JobExecutionListener.
In this example, job end log is output.

(4) Set the listener implemented in (1), in <listeners> tag of Bean definition.
Details of setup method are explained in Listener settings.

Listener support class

When multiple listener interfaces are set to implements, blank implementation is
required to be done for the components which are not necessary for the process.
Support classes wherein blank implementation is performed are provided in
Spring Batch in order to simplify this operation. Please note that support classes
may be used instead of interfaces, and extends is used instead of implements.

Support class

• org.springframework.batch.core.listener.ItemListenerSupport

• org.springframework.batch.core.listener.StepListenerSupport

4.5.2.1.2. When annotations are assigned

Annotations corresponding to various listener interfaces are assigned. Multiple annotations can
also be implemented as required.

Correspondence table with listener interface

158 | 4.5. Listener

Listener interface Annotation

JobExecutionListener @beforeJob
@afterJob

StepExecutionListener @BeforeStep
@AfterStep

ChunkListener @BeforeChunk
@AfterChunk
@afterChunkError

ItemReadListener @BeforeRead
@AfterRead
@OnReadError

ItemProcessListener @beforeProcess
@afterProcess
@onProcessError

ItemWriteListener @BeforeWrite
@AfterWrite
@OnWriteError

These annotations work for the target scope by assigning them to the implementation method
which is divided into components. Implementation example is given below.

4.5. Listener | 159

Implementation example for ItemProcessor wherein the annotation is assigned

@Component
public class AnnotationAmountCheckProcessor implements
 ItemProcessor<SalesPlanDetail, SalesPlanDetail> {

 private static final Logger logger =
 LoggerFactory.getLogger(AnnotationAmountCheckProcessor.class);

 @Override
 public SalesPlanDetail process(SalesPlanDetail item) throws Exception {
 if (item.getAmount().signum() == -1) {
 throw new IllegalArgumentException("amount is negative.");
 }
 return item;
 }

 // (1)
 /*
 @BeforeProcess
 public void beforeProcess(Object item) {
 logger.info("before process. [Item :{}]", item);
 }
 */

 // (2)
 @AfterProcess
 public void afterProcess(Object item, Object result) {
 logger.info("after process. [Result :{}]", result);
 }

 // (3)
 @OnProcessError
 public void onProcessError(Object item, Exception e) {
 logger.error("on process error.", e);
 }
}

Configuration example of listener

<batch:job id="chunkJobWithListenerAnnotation" job-repository="jobRepository">
 <batch:step id="chunkJobWithListenerAnnotation.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="annotationAmountCheckProcessor"
 writer="writer" commit-interval="10"/> <! -- (4) -->
 </batch:tasklet>
 </batch:step>
</batch:job>

160 | 4.5. Listener

Description

Sr. No. Description

(1) When the annotation is used for implementation, only the annotations required at the
time for the processing should be assigned.
In this example, since no operation is required prior to processing of ItemProcess, the
implementation wherein @beforeProcess is assigned, becomes unnecessary.

(2) Implement the process to be performed after the processing of ItemProcess.
In this example, process results are output in a log.

(3) Implement processing when an error occurs in ItemProcess.
Exception generated in this example is output in a log.

(4) Set ItemProcess wherein the listener is implemented by using annotation in <chunk> tag.
Unlike listener interface, the listener is automatically registered even when it is not set
in <listener> tag.

Constraints for the method which assigns the annotations

Any method cannot be used as a method to assign the annotation. The signature
must match with the method of corresponding listener interface. This point is
clearly mentioned in javadoc of respective annotations.

Precautions while implementing JobExecutionListener by an annotation

Since JobExecutionListener has a different scope than the other listeners, listener
is not automatically registered in the configuration above. Hence, it is necessary to
explicitly set in the <listener> tag. For details ,refer Listener settings.

Implementation of a listener to Tasklet implementation by using annotation

When a listener is implemented in Tasklet implementation by using an annotation,
Note that listener does not start with the following settings.

In case of Tasklet

<batch:job id="taskletJobWithListenerAnnotation" job-
repository="jobRepository">
 <batch:step id="taskletJobWithListenerAnnotation.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="annotationSalesPlanDetailRegisterTasklet"/>
 </batch:step>
</batch:job>

In case of Tasket model, the listener interface should be used in accordance with
How to choose an interface or an annotation.

4.5.2.2. Listener settings

Listeners are set by <listeners>.<listener> tag of Bean definition. Although it can be described at
various locations by XML schema definition, some operations do not work as intended based on the

4.5. Listener | 161

type of interface. Set it to the following position.

Position where listener is set

<!-- for chunk mode -->
<batch:job id="chunkJob" job-repository="jobRepository">
 <batch:step id="chunkJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="(1)"
 processor="(1)"
 writer="(1)" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="(2)"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="(3)"/>
 </batch:listeners>
</batch:job>

<!-- for tasklet mode -->
<batch:job id="taskletJob" job-repository="jobRepository">
 <batch:step id="taskletJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager" ref="tasklet">
 <batch:listeners>
 <batch:listener ref="(2)"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="(3)"/>
 </batch:listeners>
</batch:job>

Description of configuration value

Sr. No. Description

(1) Set the component which includes the implementation attributing to StepListener,
performed by using an annotation.
In case of an annotation, it will be inevitably set to this location.

(2) Set listener interface implementation attributing to StepListener. In case of tasklet
model, ItemReadListener, ItemProcessListener and ItemWriteListener cannot be used.

(3) Set listener attributing to JobListener.
Either of interface or annotations must be implemented here.

4.5.2.2.1. Setting multiple listeners

Multiple listeners can be set in <batch:listeners> tag.

162 | 4.5. Listener

The sequence in which the listeners are started while registering multiple listeners is shown below.

• ItemProcessListener implementation

◦ listenerA, listenerB

• JobExecutionListener implementation

◦ listenerC, listenerD

Configuration example of multiple listeners

<batch:job id="chunkJob" job-repository="jobRepository">
 <batch:step id="chunkJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="pocessor"
 writer="writer" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="listenerA"/>
 <batch:listener ref="listenerB"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="listenerC"/>
 <batch:listener ref="listenerD"/>
 </batch:listeners>
</batch:job>

4.5. Listener | 163

Listener startup sequence

• Processing corresponding to pre-processing is started in the sequence of listener registration.

• Processing corresponding to post-processing or error processing is started in the reverse
sequence of listener registration.

4.5.2.3. How to choose an interface or an annotation

How to use listener as a listener interface or as an annotation is explained.

Listener interface

It is used in case of cross-sectional processes which are shared across job, step and chunk.

Annotation

It is used when business logic specific process is to be performed.
As a rule, it is implemented only for ItemProcessor.

4.5.2.4. Exception occurred in pre-processing with StepExecutionListener

When an exception occurs in preprocessing (beforeStep method), open/close of resource changes

164 | 4.5. Listener

with model. The occurrence of exception in preprocessing for each model is explained.

Chunk model

Since preprocessing is done before opening the resource, the resource is not opened.
Since the resource is closed even if the resource is not opened, it should be noted when
implementing ItemReader/ItemWriter.

Tasklet model

In tasklet model, open/close the resource explicitly in execute method.
When an exception occurs in preprocessing, the resource does not open/close normally since
execute method is not executed.

4.5.2.5. Job abort in preprocess (StepExecutionListener#beforeStep())

When the conditions to execute job, are not satisfied, you may want to abort the process before
executing the job.

In such a case, by throwing an exception in preprocess (beforeStep method), the process can be
aborted before executing the job.
Here, the case wherein the following requirements are implemented, is explained as an example.

1. Validate start parameters of input file and output file using beforeStep method defined by
StepExecutionListener.

2. Throw an exception when any of the start parameters are not specified.

However, in TERASOLUNA Batch 5.x, it is recommended to use JobParametersValidator for
validation of start parameters. Since easy to understand validation is being used persistently as a
sample of aborting preprocess, refer "Parameters validation" to actually validate the start
parameters.

Implementation example is shown below.

4.5. Listener | 165

Implementation example of StepExecutionListener that validates start parameters

@Component
@Scope("step")
public class CheckingJobParameterErrorStepExecutionListener implements
StepExecutionListener {

 @Value("#{jobParameters['inputFile']}") // (1)
 private File inputFile;

 @Value("#{jobParameters['outputFile']}") // (1)
 private File outputFile;

 @Override
 public void beforeStep(StepExecution stepExecution) {
 if (inputFile == null) {
 throw new BeforeStepException("The input file must be not null."); // (2)
 }
 else if (outputFile == null) {
 throw new BeforeStepException("The output file must be not null."); // (2)
 }
 }

 @Override
 public ExitStatus afterStep(StepExecution stepExecution) {
 // omitted.
 }
}

Configuration example of listener

<bean id="reader"
class="org.terasoluna.batch.functionaltest.ch04.listener.LoggingReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"/> <!-- (3) -->
<bean id="writer"
class="org.terasoluna.batch.functionaltest.ch04.listener.LoggingWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"/> <!-- (3) -->

<batch:job id="chunkJobWithAbortListener" job-repository="jobRepository">
 <batch:step id="chunkJobWithAbortListener.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" writer="writer" commit-interval="10"/>
 </batch:tasklet>
 <batch:listeners>
 <batch:listener ref="checkingJobParameterErrorStepExecutionListener"/>
<!-- (4) -->
 </batch:listeners>
 </batch:step>
</batch:job>

166 | 4.5. Listener

Description

Sr. No. Description

(1) Specify the parameters to refer by using @Value annotation.

(2) Throw an exception.
In this example, RuntimeException class is inherited and own exception class is used.

(3) Specify the parameters to refer.
The class that sets parameters is the own class that implements ItemStreamReader and
ItemStreamWriter respectively.

(4) Set listener interface implementation.

4.5. Listener | 167

Chapter 5. Input/Output of Data

5.1. Transaction control

5.1.1. Overview

In this section, transaction control in jobs will be described in the following order.

1. About the pattern of transaction control in general batch processing

2. Transaction control in Spring Batch

3. "How to process resources like database and file transactionally"

Since the usage of this function is different for chunk model and tasklet model, respective usage
will be explained.

5.1.1.1. About the pattern of transaction control in general batch processing

Generally, since batch processing is processing a large number of cases, if any errors are thrown at
the end of the processing and all processing need to be done again, the batch system schedule will
be adversely affected.
In order to avoid this, the influence at the time of error occurrence is often localized by advancing
the process while confirming the transaction for each fixed number of data within the processing
of one job.
(Hereafter, we call the "intermediate commit method" as the method of defining the transaction for
every fixed number of data, and the "chunk" as the one grouping the data in the commit unit.)

The points of the intermediate commit method are summarized below.

1. Localize the effects at the time of error occurrence.

◦ Even if an error occurs, the processing till the chunk just before the error part is confirmed.

2. Only use a certain amount of resources.

◦ Regardless of whether the data to be processed is large or small, only resources for chunks
are used, so they are stable.

However, the intermediate commit method is not a effective method in every situation.
Processed data and unprocessed data are mixed in the system even though it is temporary. As a
result, since it is necessary to identify unprocessed data at the time of recovery processing, there is
a possibility that the recovery becomes complicated. In order to avoid this, all of the cases must be
confirmed with one transaction, and the intermediate commit method should not be used.
(Hereafter, the method of determining all cases in one transaction is called "single commit
method".)

Nevertheless, if you process a large number of records such as tens of thousands of records by
using a single commit method, a heavy load may occur trying to reflect all the records in the
database at the time of committing. Therefore, although the single commit method is suitable for
small-scale batch processing, care must be taken when adopting it in a large-scale batch. Hence, this

168 | 5.1. Transaction control

method cannot be necessarily called as a versatile method.

In other words, there is a trade-off between "localization of impact" and "ease of recovery".
Determine whether to give priority to "intermediate commit method" or "single commit method"
depending on the nature of the job, for the respective usage.
Of course, it is not necessary to implement all the jobs in the batch system on either side. It is
natural to use "intermediate commit method" for basic jobs and use "single commit method" for
special jobs (or vice versa).

Below is the summary of advantages, disadvantages and adoption points of "intermediate commit
method" and "single commit method".

Features list by method

Commit method Advantage Disadvantage Adoption point

intermediate commit
method

Localize the effect at
the time of error
occurrence

Recovery processing
may be complicated

When you want to
process large amounts
of data with certain
machine resources

single commit method Ensure data integrity There is a possibility of
high work-load when
processing a large
number of cases

When you want to set
the processing result
for the persistent
resource to All or
Nothing.
Suitable for small batch
processing

Notes for input and output to the same table in the database

For the database structure, care must be taken while handling a large amount of
data during the process of input and output to the same table, regardless of the
commit method.

• As the information which ensures reading consistency is lost due to output
(issuing UPDATE), errors may occur at the input (SELECT).

In order to avoid this, the following measures are taken.

• Increase the area to secure information.

◦ When expanding, please thoroughly study through resource design and
implement it.

◦ Since the extension method depends on the database to be used, refer to
the manual.

• Divides input data and performs multiple processing.

◦ Refer to "Partitioning Step (Multiple processing)" for multiple processing.

5.1. Transaction control | 169

5.1.2. Architecture

5.1.2.1. Transaction control in Spring Batch

Job transaction control leverages the mechanism of Spring Batch.

Two kinds of transactions are defined below.

Framework transaction

Transaction controlled by Spring Batch

User transaction

Transactions controlled by the user

5.1.2.1.1. Transaction control mechanism in chunk model

Transaction control in the chunk model is only the intermediate commit method. A single commit
method can not be done.

The single commit method in the chunk model is reported in JIRA.
https://jira.spring.io/browse/BATCH-647
As a result, it is solved by customizing chunk completion policy and dynamically
changing the chunk size. However, with this method, since all data is stored in one
chunk and memory is compressed, it can not be adopted as a method.

A feature of this method is that transactions are repeatedly performed for each chunk.

Transaction control in normal process

Transaction control in normal process will be explained.

170 | 5.1. Transaction control

https://jira.spring.io/browse/BATCH-647

Sequence diagram of normal process

Description of the Sequence Diagram

1. Steps are executed from the job.

◦ The subsequent processing is repeated until there is no input data.

◦ Start a framework transaction for each chunk.

◦ Repeat steps 2 to 5 until the chunk size is reached.

2. The step obtains input data from ItemReader.

3. ItemReader returns the input data to the step.

4. In the step, ItemProcessor processes input data.

5. ItemProcessor returns the processing result to the step.

6. The step outputs data for chunk size with ItemWriter.

7. ItemWriter will output to the target resource.

8. The step commits the framework transaction.

Transaction control in abnormal process

Transaction control in abnormal process will be explained.

5.1. Transaction control | 171

Sequence diagram of abnormal process

Description of the Sequence Diagram

1. Steps are executed from the job.

◦ The subsequent processing is repeated until there is no input data.

◦ Start a framework transaction on a per chunk basis.

◦ Repeat steps 2 to 5 until the chunk size is reached.

2. The step obtains input data from ItemReader.

3. ItemReader returns the input data to the step.

4. In the step, ItemProcessor processes input data.

5. ItemProcessor returns the processing result to the step.

6. The step outputs data for chunk size with ItemWriter.

7. ItemWriter will output to the target resource.

◦ If any exception occurs between the processes from 2 to 7, perform the subsequent
process.

8. The step rolls back the framework transaction.

172 | 5.1. Transaction control

5.1.2.1.2. Mechanism of transaction control in tasklet model

For transaction control in the tasklet model, either the single commit method or the intermediate
commit method can be used.

single commit method

Use the transaction control mechanism of Spring Batch

Intermediate commit method

Manipulate the transaction directly with the user

single commit method in tasklet model

Explain the mechanism of transaction control by Spring Batch.

A feature of this method is to process data repeatedly within one transaction.

Transaction control in normal process

Transaction control in normal process will be explained.

Sequence diagram of normal process

Description of the Sequence Diagram

1. Steps are executed from the job.

5.1. Transaction control | 173

◦ The step starts a framework transaction.

2. The step executes the tasklet.

◦ Repeat steps 3 to 7 until there is no more input data.

3. Tasklet gets input data from Repository.

4. Repository will return input data to tasklet.

5. Tasklets process input data.

6. Tasklets pass output data to Repository.

7. Repository will output to the target resource.

8. The tasklet returns the process end to the step.

9. The step commits the framework transaction.

Transaction control in abnormal process

Transaction control in abnormal process will be explained.

Sequence diagram of abnormal process

Description of the Sequence Diagram

1. Steps are executed from the job.

◦ The step starts a framework transaction.

174 | 5.1. Transaction control

2. The step executes the tasklet.

◦ Repeat steps 3 to 7 until there is no more input data.

3. Tasklet gets input data from Repository.

4. Repository will return input data to tasklet.

5. Tasklets process input data.

6. Tasklets pass output data to Repository.

7. Repository will output to the target resource.

◦ If any exception occurs between the process from 2 to 7, perform the subsequent process.

8. The tasklet throws an exception to the step.

9. The step rolls back the framework transaction.

Intermediate commit method in tasklet model

A mechanism for directly operating a transaction by a user will be described.

Feature of this method is that resource transactions are handled only by user transactions, by using
framework transactions that cannot manipulate resources.
Specify org.springframework.batch.support.transaction.ResourcelessTransactionManager without
resources, in transaction-manager attribute.

Transaction control in normal process

Transaction control in normal process will be explained.

5.1. Transaction control | 175

Sequence diagram of normal process

Description of the Sequence Diagram

1. Steps are executed from the job.

◦ The step starts framework transaction.

2. The step executes the tasklet.

◦ Repeat steps 3 to 10 until there is no more input data.

3. The tasklet starts user transaction via TransacitonManager.

◦ Repeat steps 4 to 8 until the chunk size is reached.

4. Tasklet gets input data from Repository.

5. Repository will return input data to tasklet.

6. Tasklets process input data.

176 | 5.1. Transaction control

7. Tasklets pass output data to Repository.

8. Repository will output to the target resource.

9. The tasklet commits the user transaction via TransacitonManager.

10. TransacitonManager issues a commit to the target resource.

11. The tasklet returns the process end to the step.

12. The step commits the framework transaction.

In this case, each item is output to a resource, but like the chunk model, it is also
possible to update the processing throughput collectively by chunk unit and
improve the processing throughput. At that time, you can also use BatchUpdate by
setting executorType of SqlSessionTemplate to BATCH. This is the same behavior as
using MyBatis' ItemWriter, so you can update it using MyBatis' ItemWriter. For
details of MyBatis' ItemWriter, refer to MyBatisBatchItemWriter.

Transaction control in abnormal process

Transaction control in abnormal process will be explained.

5.1. Transaction control | 177

Sequence diagram of abnormal process

Description of the Sequence Diagram

1. Steps are executed from the job.

◦ The step starts framework transaction.

2. The step executes the tasklet.

◦ Repeat steps 3 to 11 until there is no more input data.

3. The tasklet starts user transaction from TransacitonManager.

◦ Repeat steps 4 to 8 until the chunk size is reached.

4. Tasklet gets input data from Repository.

178 | 5.1. Transaction control

5. Repository will return input data to tasklet.

6. Tasklets process input data.

7. Tasklets pass output data to Repository.

8. Repository will output to the target resource.

If any exception occurs between the process from 3 to 8, perform the subsequent process.

9. The tasklet processes the exception that occurred.

10. The tasklet performs a rollback of user transaction via TransacitonManager.

11. TransacitonManager issues a rollback to the target resource.

12. The tasklet throws an exception to the step.

13. The step rolls back framework transaction.

About processing continuation

Here, although processing is abnormally terminated after handling exceptions and
rolling back the processing, it is possible to continue processing the next chunk. In
either case, it is necessary to notify the subsequent processing by changing the
status / end code of the step that an error has occurred during that process.

About framework transactions

In this case, although the job is abnormally terminated by throwing an exception
after rolling back the user transaction, it is also possible to return the processing
end to the step and terminate the job normally. In this case, the framework
transaction is committed.

5.1.2.1.3. Selection policy for model-specific transaction control

In Spring Batch that is the basis of TERASOLUNA Batch 5.x, only the intermediate commit method
can be implemented in the chunk model. However, in the tasklet model, either the intermediate
commit method or the single commit method can be implemented.

Therefore, in TERASOLUNA Batch 5.x, when the single commit method is necessary, it is to be
implemented in the tasklet model.

5.1.2.2. Difference in transaction control for each execution method

Depending on the execution method, a transaction that is not managed by Spring Batch occurs
before and after the job is executed. This section explains transactions in two asynchronous
execution processing schemes.

5.1.2.2.1. About transaction of DB polling

Regarding processing to the Job-request-table performed by the DB polling, transaction processing
other than Spring Batch managed will be performed. Also, regarding exceptions that occurred in
the job, since correspondence is completed within the job, it does not affect transactions performed
by JobRequestPollTask.

5.1. Transaction control | 179

A simple sequence diagram focusing on transactions is shown in the figure below.

Transaction of DB polling

Description of the Sequence Diagram

1. JobRequestPollTask is executed periodically from asynchronous batch daemon.

2. JobRequestPollTask will start a transaction which is not managed by Spring Batch.

3. JobRequestPollTask will retrieve an asynchronous execution target job from Job-request-table.

4. JobRequestPollTask will commit the transaction which is not managed by Spring Batch.

5. JobRequestPollTask will start a transaction which is not managed by Spring Batch.

6. JobRequestPollTask will update the status of Job-request-table’s polling status from INIT to
POLLED.

7. JobRequestPollTask will commit the transaction which is not managed by Spring Batch.

180 | 5.1. Transaction control

8. JobRequestPollTask will execute the job.

9. Within a job, Spring Batch carries out transaction control of the database for management
(JobRepository).

10. Within a job, Spring Batch carries out transaction control of the database for job.

11. job_execution_id is returned to JobRequestPollTask

12. JobRequestPollTask will start a transaction which is not managed by Spring Batch.

13. JobRequestPollTask will update the status of Job-request-table’s polling status from INIT to
EXECUTE.

14. JobRequestPollTask will commit the transaction which is not managed by Spring Batch.

About Commit at SELECT Issuance

Some databases may implicitly start transactions when SELECT is issued.
Therefore, by explicitly issuing a commit, the transaction is confirmed so that the
transaction is clearly distinguished from other transactions and is not influenced.

5.1.2.2.2. About the transaction of WebAP server process

For processing to resources targeted by WebAP, transaction processing which is not managed by
Spring Batch is performed. Further, since the exceptions occurred in the job are handled within the
job itself, it does not affect transactions performed by WebAP.

A simple sequence diagram focusing on transactions is shown in the figure below.

5.1. Transaction control | 181

Transaction of WebAP server process

Description of the Sequence Diagram

1. WebAP processing is executed by the request from the client

2. WebAP will start the transaction which is not managed by Spring Batch.

3. WebAP reads from and writes to resources in WebAP before job execution.

4. WebAP executes the job.

5. Within a job, Spring Batch carries out transaction control of the database for management
(JobRepository).

6. Within a job, Spring Batch carries out transaction control of the database for job.

7. job_execution_id is returned to WebAP.

8. WebAP reads from and writes to resources in WebAP after job execution.

9. WebAP will commit the transaction which is not managed by Spring Batch.

10. WebAP returns a response to the client.

5.1.3. How to use

Here, transaction control in one job will be explained separately in the following cases.

• For a single data source

• For multiple data sources

182 | 5.1. Transaction control

The data source refers to the data storage location (database, file, etc.). A single data source refers to
one data source, and multiple data sources refers to two or more data sources.

Processing of data in the database is a typical example of processing of single data source.
There are some variations in the case of processing multiple data sources as follows.

• multiple databases

• databases and files

5.1.3.1. For a single data source

Transaction control of a job which inputs / outputs to single data source is explained.

Below is a sample setting with TERASOLUNA Batch 5.x.

DataSource setting(META-INF/spring/launch-context.xml)

<!-- Job-common definitions -->
<bean id="jobDataSource" class="org.apache.commons.dbcp2.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${jdbc.driver}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"
 p:maxTotal="10"
 p:minIdle="1"
 p:maxWaitMillis="5000"
 p:defaultAutoCommit="false" />

TransactionManager setting(META-INF/spring/launch-context.xml)

<!-- (1) -->
<bean id="jobTransactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager"
 p:dataSource-ref="jobDataSource"
 p:rollbackOnCommitFailure="true" />

No Description

(1) Bean definition of TransactionManager.
Set jobDataSource defined above for the data source.
It has been set to roll back if commit fails.

5.1.3.1.1. Implement transaction control

The control method differs depending on the job model and the commit method.

In case of chunk model

In the case of the chunk model, it is an intermediate commit method, leaving transaction control to

5.1. Transaction control | 183

Spring Batch. Transaction control should not be done by the user.

Setting sample(job definition)

<batch:job id="jobSalesPlan01" job-repository="jobRepository">
 <batch:step id="jobSalesPlan01.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"> <!-- (1) -->
 <batch:chunk reader="detailCSVReader"
 writer="detailWriter"
 commit-interval="10" /> <!-- (2) -->
 </batch:tasklet>
 </batch:step>
</batch:job>

No Description

(1) Set jobTransactionManager which is already defined in transaction-manager attribute of
<batch:tasklet> tag.
The intermediate commit method transaction is controlled by the transaction manager
set here.

(2) Set chunk size to commit-interval attribute. In this sample, commit once for every 10
records.

For the tasklet model

In the case of the tasklet model, the method of transaction control differs depending on whether the
method is single commit method or the intermediate commit method.

single commit method

Spring Batch control transaction.

Setting sample(job definition)

<batch:job id="jobSalesPlan01" job-repository="jobRepository">
 <batch:step id="jobSalesPlan01.step01">
 <!-- (1) -->
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="salesPlanSingleTranTask" />
 </batch:step>
</batch:job>

No Description

(1) Set jobTransactionManager which is already defined in transaction-manager attribute of
<batch:tasklet> tag.
The single commit method transaction is controlled by the transaction manager set here.

intermediate commit method

Control transaction by user.

184 | 5.1. Transaction control

• If you want to commit in the middle of processing, inject the TransacitonManager and operate
manually.

Setting sample(job definition)

<batch:job id="jobSalesPlan01" job-repository="jobRepository">
 <batch:step id="jobSalesPlan01.step01">
 <!-- (1) -->
 <batch:tasklet transaction-manager="jobResourcelessTransactionManager"
 ref="salesPlanChunkTranTask" />
 </batch:step>
</batch:job>

Implementation sample

@Component()
public class SalesPlanChunkTranTask implements Tasklet {

 @Inject
 ItemStreamReader<SalesPlanDetail> itemReader;

 // (2)
 @Inject
 @Named("jobTransactionManager")
 PlatformTransactionManager transactionManager;

 @Inject
 SalesPlanDetailRepository repository;

 private static final int CHUNK_SIZE = 10;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 DefaultTransactionDefinition definition = new DefaultTransactionDefinition();
 TransactionStatus status = null;

 try {
 // omitted.

 itemReader.open(executionContext);

 while ((item = itemReader.read()) != null) {

 if (count % CHUNK_SIZE == 0) {
 status = transactionManager.getTransaction(definition); // (3)
 }
 count++;

5.1. Transaction control | 185

 // omitted.

 repository.create(item);
 if (count % CHUNK_SIZE == 0) {
 transactionManager.commit(status); // (4)
 }
 }
 } catch (Exception e) {
 logger.error("Exception occurred while reading.", e);
 transactionManager.rollback(status); // (5)
 throw e;
 } finally {
 if (!status.isCompleted()) {
 transactionManager.commit(status); // (6)
 }
 itemReader.close();
 }

 return RepeatStatus.FINISHED;
 }
}

No Description

(1) Set jobResourcelessTransactionManager which is already defined in transaction-manager
attribute of <batch:tasklet> tag.

(2) Inject the transaction manager.
In the @Named annotation, specify jobTransactionManager to identify the bean to use.

(3) Start a transaction at the beginning of the chunk.

(4) Commit the transaction at the end of the chunk.

(5) When an exception occurs, roll back the transaction.

(6) For the last chunk, commit the transaction.

Updating by ItemWriter

In the above example, although Repository is used, it is possible to update data
using ItemWriter. Using ItemWriter has the effect of simplifying implementation,
especially FlatFileItemWriter should be used when updating files.

5.1.3.1.2. Note for non-transactional data sources

In the case of files, no transaction setting or operation is necessary.

When using FlatFileItemWriter, pseudo transaction control can be performed. This is implemented
by delaying the writing to the resource and actually writing out at the time of commit. Normally,
when it reaches the chunk size, it outputs chunk data to the actual file, and if an exception occurs,
data output of the chunk is not performed.

186 | 5.1. Transaction control

FlatFileItemWriter can switch transaction control on and off with transactional property. The
default is true and transaction control is enabled. If the transactional property is false,
FlatFileItemWriter will output the data regardless of the transaction.

When adopting the single commit method, it is recommended to set the transactional property to
false. As described above, since data is written to the resource at the time of commit, until then, all
the output data is held in the memory. Therefore, when the amount of data is large, issue of
insufficient memory is highly likely to occur resulting in possible errors.

On TransacitonManager settings in jobs that only handle files

As in the following job definition, the transaction-manager attribute of batch:
tasklet is mandatory in the xsd schema and can not be omitted.

Extract of TransactionManager setting part

<batch:tasklet transaction-manager="jobTransactionManager">
<batch:chunk reader="reader" writer="writer" commit-interval="100" />
</batch:tasklet>

Therefore, always specify jobTransactionManager. At this time, the following
behaviors are obtained.

• If transactional is true

◦ Synchronize with specified TransacitonManager and output to resource.

• If transactional is false

◦ Transaction processing of the specified TransacitonManager is idle and it
outputs to the resource regardless of the transaction.

At this time, transactions are issued to the resource (eg, database) referred to by
jobTransactionManager, but since there is no table access, there is no actual damage.

If you do not want to issue transactions to refer to even if it is idle or in case of
actual damage, you can use ResourcelessTransactionManager which does not
require resources. ResourcelessTransactionManager is defined as
jobResourcelessTransactionManager in launch-context.xml.

Sample usage of ResourcelessTransactionManager

<batch:tasklet transaction-manager="jobResourcelessTransactionManager">
 <batch:chunk reader="reader" writer="writer" commit-interval="100"
/>
</batch:tasklet>

5.1.3.2. For multiple data sources

Transaction control for the jobs which input / output to multiple data sources is explained. Since
points of consideration are different for input and output, these will be explained separately.

5.1. Transaction control | 187

5.1.3.2.1. Input from multiple data source

When retrieving data from multiple data sources, the data which is the center of the processing and
additional data accompanying it should be retrieved separately. Hereafter, the data which is the
center of the processing is referred to as the process target record, and the additional data
accompanying it is referred to as accompanying data.

Because of the structure of Spring Batch, ItemReader is based on the premise that it retrieves a
process target record from one resource. Idea remains the same regardless of the type of resource.

1. Retrieving process target record

◦ Get it by ItemReader.

2. Retrieving accompanying data

◦ As for the accompanying data, it is necessary to select the fetching method according to the
presence or absence of change to the data and the number of cases. This is not an option; it
may be used in combination.

▪ Batch retrieval before step execution

▪ Retrieve each time according to the record to be processed

When retrieving all at once before step execution

Implement Listener to do the following and refer to data from the following Step.

• Retrieve data collectively

• Store the information in the bean whose scope is Job or Step

◦ ExecutionContext of Spring Batch can be used, but a different class can be created to store
data considering the readability and maintainability. For the sake of simplicity, the sample
will be explained using ExecutionContext.

This method is adopted when reading data that does not depend on data to be processed such as
master data. However, even if it is a master data, when there are a large number of records
resulting in memory compression, it may be considered whether it is to be retrieved each time.

188 | 5.1. Transaction control

Implementation of Listener for collective retrieve

@Component
// (1)
public class BranchMasterReadStepListener extends StepExecutionListenerSupport {

 @Inject
 BranchRepository branchRepository;

 @Override
 public void beforeStep(StepExecution stepExecution) { // (2)

 List<Branch> branches = branchRepository.findAll(); //(3)

 Map<String, Branch> map = branches.stream()
 .collect(Collectors.toMap(Branch::getBranchId,
 UnaryOperator.identity())); // (4)

 stepExecution.getExecutionContext().put("branches", map); // (5)
 }
}

Definition of Listener for collective retrieve

<batch:job id="outputAllCustomerList01" job-repository="jobRepository">
 <batch:step id="outputAllCustomerList01.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="retrieveBranchFromContextItemProcessor"
 writer="writer" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="branchMasterReadStepListener"/> <!-- (6) -->
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
</batch:job>

5.1. Transaction control | 189

An example of referring data collectively retrieved by the ItemProcessor of the subsequent step

@Component
public class RetrieveBranchFromContextItemProcessor implements
 ItemProcessor<Customer, CustomerWithBranch> {

 private Map<String, Branch> branches;

 @BeforeStep // (7)
 @SuppressWarnings("unchecked")
 public void beforeStep(StepExecution stepExecution) {
 branches = (Map<String, Branch>) stepExecution.getExecutionContext()
 .get("branches"); // (8)
 }

 @Override
 public CustomerWithBranch process(Customer item) throws Exception {
 CustomerWithBranch newItem = new CustomerWithBranch(item);
 newItem.setBranch(branches.get(item.getChargeBranchId())); // (9)
 return newItem;
 }
}

No Description

(1) Implement StepExecutionListener interface.
In order to simplify the implementation here, it is an extension from
StepExecutionListenerSupport which implements the StepExecutionListener interface.

(2) Implement the beforeStep method to get data before step execution.

(3) Implement processing to retrieve master data.

(4) Convert from List type to Map type so that it can be used easily in subsequent
processing.

(5) Set the acquired master data in the context of the step as branches.

(6) Register the created Listener to the target job.

(7) In order to acquire master data before step execution of ItemProcessor, set up Listener
with @BeforeStep annotation.

(8) In the method given the @BeforeStep annotation, obtain the master data set in (5) from
the context of the step.

(9) In the process method of ItemProcessor, data is retrieved from the master data.

Object to store in context

The object to be stored in the context(ExecutionContext) must be a class that
implements java.io.Serializable. This is because ExecutionContext is stored in
JobRepository.

190 | 5.1. Transaction control

Retrieving each time according to the record to be processed

Apart from ItemProcessor of business processing, it retrieves by ItemProcessor designated just for
retrieving every time. This simplifies processing of each ItemProcessor.

1. For each retrieval, define an ItemProcessor and separate it from business processing.

◦ At this time, use MyBatis as it is when accessing the table.

2. Concatenate multiple ItemProcessors using CompositeItemProcessor.

◦ Note that ItemProcessor is processed in the order specified in the delegates attribute.

Sample implementation of ItemProcessor designated just for retrieving every time

@Component
public class RetrieveBranchFromRepositoryItemProcessor implements
 ItemProcessor<Customer, CustomerWithBranch> {

 @Inject
 BranchRepository branchRepository; // (1)

 @Override
 public CustomerWithBranch process(Customer item) throws Exception {
 CustomerWithBranch newItem = new CustomerWithBranch(item);
 newItem.setBranch(branchRepository.findOne(
 item.getChargeBranchId())); // (2)
 return newItem; // (3)
 }
}

Definition sample of ItemProcessor designated just for retrieving every time and ItemProcessor for
business process

<bean id="compositeItemProcessor"
 class="org.springframework.batch.item.support.CompositeItemProcessor">
 <property name="delegates">
 <list>
 <ref bean="retrieveBranchFromRepositoryItemProcessor"/> <!-- (4) -->
 <ref bean="businessLogicItemProcessor"/> <!-- (5) -->
 </list>
 </property>
</bean>

No Description

(1) Inject Repository for retrieving every time using MyBatis.

(2) Accompanying data is retrieved from the Repository for input data(process target
record).

5.1. Transaction control | 191

No Description

(3) Return data with processing target record and accompanying data together.
Notice that this data will be the input data to the next ItemProcessor.

(4) Set ItemProcessor for retrieving every time.

(5) Set ItemProcessor for business logic.

5.1.3.2.2. Output to multiple data sources(multiple steps)

Process multiple data sources throughout the job by dividing the steps for each data source and
processing a single data source at each step.

• Data processed at the first step is stored in a table, and is output to the file in the second step.

• Although each step is simple and easy to recover, it is likely to cause issues if carried out twice.

◦ Accordingly, when following harmful effects are generated, consider processing multiple
data sources in one step.

▪ Processing time increases

▪ Business logic becomes redundant

5.1.3.2.3. Output to multiple data sources(single step)

Generally, when transactions for a plurality of data sources are combined into one, a distributed
transaction based on 2 phase-commit is used. However, it is also known that there are the following
disadvantages.

• Middleware must be compatible with distributed transaction API such as XAResource, and
special setting based on it is required

• In standalone Java like a batch program, you need to add a JTA implementation library for
distributed transactions

• Recovery in case of failure is difficult

Although it is possible to utilize distributed transactions also in Spring Batch, the method using
global transaction by JTA requires performance overhead due to the characteristics of the protocol.
As a method to process multiple data sources collectively more easily, Best Efforts 1PC pattern is
recommended.

What is Best Efforts 1PC pattern

Briefly, it refers to the technique of handling multiple data sources as local transactions and
issuing sequential commits at the same timing. The conceptual diagram is shown in the figure
below.

192 | 5.1. Transaction control

Conceptual diagram of Best Efforts 1PC pattern

Description of figure

1. The user instructs ChainedTransactionManager to start the transaction.

2. ChainedTransactionManager starts a transaction sequentially with registered transaction
managers.

3. The user performs transactional operations on each resource.

4. The user instructs ChainedTransactionManager to commit.

5. ChainedTransactionManager issues sequential commits on registered transaction managers.

◦ Commit(or roll back) in reverse order of transaction start

Since this method is not a distributed transaction, there is a possibility that data consistency may
not be maintained if a failure(exception) occurs at commit / rollback in the second and subsequent
transaction managers. Therefore, although it is necessary to design a recovery method when a
failure occurs at a transaction boundary, there is an effect that the recovery frequency can be
reduced and the recovery procedure can be simplified.

5.1. Transaction control | 193

When processing multiple transactional resources at the same time

Use it when processing multiple databases simultaneously, processing database and MQ, and so on.

Process as 1 phase-commit by defining multiple transaction managers as one using
ChainedTransactionManager as follows. Note that ChainedTransactionManager is a class provided by
Spring Data.

pom.xml

<dependencies>
 <!-- omitted -->
 <!-- (1) -->
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-commons</artifactId>
 </dependency>
<dependencies>

Sample usage of chainedTransactionManager

<!-- Chained Transaction Manager -->
<!-- (2) -->
<bean id="chainedTransactionManager"
 class="org.springframework.data.transaction.ChainedTransactionManager">
 <constructor-arg>
 <!-- (3) -->
 <list>
 <ref bean="transactionManager1"/>
 <ref bean="transactionManager2"/>
 </list>
 </constructor-arg>
</bean>

<batch:job id="jobSalesPlan01" job-repository="jobRepository">
 <batch:step id="jobSalesPlan01.step01">
 <!-- (4) -->
 <batch:tasklet transaction-manager="chainedTransactionManager">
 <!-- omitted -->
 </batch:tasklet>
 </batch:step>
</batch:job>

No Description

(1) Add a dependency to use ChainedTransactionManager.

(2) Define the bean of ChainedTransactionManager.

(3) Define multiple transaction managers that you want to summarize in a list.

194 | 5.1. Transaction control

No Description

(4) Specify the bean ID defined in (1) for the transaction manager used by the job.

When processing transactional and nontransactional resources simultaneously

This method is used when processing databases and files at the same time.

For database, it is the same as For a single data source.

For files, setting FlatFileItemWriter’s transactional property to true provides the same effect as the
"Best Efforts 1PC pattern" described above.
For details, refer to Note for non-transactional data sources.

This setting delays writing to the file until just prior to committing the database transaction, so it is
easy to synchronize with the two data sources. However, even in this case, if an error occurs during
file output processing after committing to the database, there is a possibility that data consistency
may not be maintained, so it is necessary to design a recovery method.

5.1.3.3. Notes on intermediate method commit

Although it is deprecated, when processing data is skipped with ItemWriter, the chunk size setting
value is forcibly changed. Note that this has a very big impact on transactions. Refer to Skip for
details.

5.1. Transaction control | 195

5.2. Database Access

5.2.1. Overview

MyBatis3 (hereafter, called [MyBatis]) is used for database access in TERASOLUNA Batch 5.x. Please
refer below TERASOLUNA Server 5.x Development Guideline for basic usage of database access
using MyBatis.

• Database Access (Common)

• Database Access (MyBatis3)

This chapter focuses on the usage specific to TERASOLUNA Batch 5.x.

Notes for how to use Oracle JDBC in Linux environment

While using Oracle JDBC in Linux environment, locking of random generator
number of OS used by Oracle JDBC occurs. Hence, even though jobs are attempted
to be executed in parallel, events for sequential execution and events for one
connection timeout occur.
2 patterns for how to avoid these events are shown below.

• Set following in system properties while executing Java command.

◦ -Djava.security.egd=file:///dev/urandom

• Change securerandom.source=/dev/random in $
{JAVA_HOME}/jre/lib/security/java.security to
securerandom.source=/dev/urandom.

5.2.2. How to use

Explain how to use database access as TERASOLUNA Batch 5.x.

It must be remembered that how to access database varies for chunk model and tasklet model.

There are following 2 ways to use database access in TERASOLUNA Batch 5.x.
Please select the method based on the components accessing the database.

1. Use ItemReader and ItemWriter for MyBatis.

◦ For Input/Output by using database access as chunk model.

▪ org.mybatis.spring.batch.MyBatisCursorItemReader

▪ org.mybatis.spring.batch.MyBatisBatchItemWriter

2. Use Mapper interface

◦ Used for business logic processing in chunk model.

▪ With ItemProcessor implementation.

◦ For whole database access as tasklet model.

▪ With Tasklet implementation.

196 | 5.2. Database Access

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessCommon.html
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html

5.2.2.1. Common Settings

Explain common settings required for database access.

1. DataSource Setting

2. MyBatis Setting

3. Mapper XML definition

4. MyBatis-Spring setting

5.2.2.1.1. DataSource Setting

It assumes two data sources in TERASOLUNA Batch 5.x. Show 2 default data sources in launch-
context.xml.

Data source list

Data source name Description

adminDataSource Data source used by Spring Batch and TERASOLUNA Batch 5.x
It is used in JobRepository and Asynchronous execution(DB polling)

jobDataSource Data source used by job

Show the property of connection information and launch-context.xml below.

Set these settings according to the user’s environment.

5.2. Database Access | 197

resources\META-INF\spring\launch-context.xml

<!-- (1) -->
<bean id="adminDataSource" class="org.apache.commons.dbcp2.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${admin.h2.jdbc.driver}"
 p:url="${admin.h2.jdbc.url}"
 p:username="${admin.h2.jdbc.username}"
 p:password="${admin.h2.jdbc.password}"
 p:maxTotal="10"
 p:minIdle="1"
 p:maxWaitMillis="5000"
 p:defaultAutoCommit="false"/>

<!-- (2) -->
<bean id="jobDataSource" class="org.apache.commons.dbcp2.BasicDataSource"　
 destroy-method="close"
 p:driverClassName="${jdbc.driver}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"
 p:maxTotal="10"
 p:minIdle="1"
 p:maxWaitMillis="5000"
 p:defaultAutoCommit="false" />

batch-application.properties

(3)
Admin DataSource settings.
admin.jdbc.driver=org.h2.Driver
admin.jdbc.url=jdbc:h2:mem:batch;DB_CLOSE_DELAY=-1
admin.jdbc.username=sa
admin.jdbc.password=

(4)
Job DataSource settings.
jdbc.driver=org.postgresql.Driver
jdbc.url=jdbc:postgresql://localhost:5432/postgres
jdbc.username=postgres
jdbc.password=postgres

Description

Sr. No. Description

(1) adminDataSource definition. Connection information of (3) is set.

(2) jobDataSource definition. Connection information of (4) is set.

198 | 5.2. Database Access

Sr. No. Description

(3) Connection information to the database used by adminDataSource
H2 is used in this example.

(4) Connection information to the database used by jobDataSource
PostgreSQL is used in this example.

5.2.2.1.2. MyBatis Setting

Important points for setting MyBatis on TERASOLUNA Batch 5.x.

One of the important points in implementing batch processing is "to efficiently process large
amounts of data with certain resources"
Explain the setting.

• fetchSize

◦ In general batch processing, it is mandatory to specify the appropriate fetchSize for the
JDBC driver to reduce the communication cost of processing large amounts of data.
fetchSize is a parameter that sets the number of data to be acquired by one communication
between the JDBC driver and the database. It is desirable to set this value as large as
possible. However, if it is too large, it presses memory. So please be careful. user has to tune
the parameter.

◦ In MyBatis, user can set defaultFetchSize as a common setting for all queries, and can
override it with fetchSize setting for each query.

• executorType

◦ In general batch processing, the same SQL is executed within the same transaction for the
number of total data count/fetchSize. At this time, it is possible to process efficiently by
reusing a statement instead of creating it each time.

◦ In the MyBatis setting, it can reuse statements by setting REUSE in defaultExecutorType and
contributes to improved processing throughput.

◦ When updating a large amount of data at once, performance improvement can be expected
by using batch update of JDBC.
Therefore, SqlSessionTemplate used in MyBatisBatchItemWriter
is set to BATCH (not REUSE) in executorType.

In TERASOLUNA Batch 5.x, two different ExecutorType exists at the same time. It is assumed that it is
often implemented by one ExecutorType, but special attention is required when using them
together. The detail will be explained in [Ch05_DBAccess_HowToUse_Input_MapperInterface].

Other parameters of MyBatis

For other parameters, refer to the following links and make settings that match the
application characteristics.
http://www.mybatis.org/mybatis-3/configuration.html

Show the default setting below.

5.2. Database Access | 199

http://www.mybatis.org/mybatis-3/configuration.html

META-INF/spring/launch-context.xml

<bean id="jobSqlSessionFactory"
 class="org.mybatis.spring.SqlSessionFactoryBean"
 p:dataSource-ref="jobDataSource">
 <!-- (1) -->
 <property name="configuration">
 <bean class="org.apache.ibatis.session.Configuration"
 p:localCacheScope="STATEMENT"
 p:lazyLoadingEnabled="true"
 p:aggressiveLazyLoading="false"
 p:defaultFetchSize="1000"
 p:defaultExecutorType="REUSE"/>
 </property>
</bean>

<!-- (2) -->
<bean id="batchModeSqlSessionTemplate"
 class="org.mybatis.spring.SqlSessionTemplate"
 c:sqlSessionFactory-ref="jobSqlSessionFactory"
 c:executorType="BATCH"/>

Description

Sr. No. Description

(1) Various settings of MyBatis
fetchSize is set to 1000 by default.

(2) For MyBatisBatchItemWriter, executorType defines SqlSessionTemplate of BATCH.

200 | 5.2. Database Access

For the definition of SqlSessionFactory using adminDataSource

When performing synchronous execution, SqlSessionFactory using
adminDataSource is unnecessary and is not defined. When performing
Asynchronous execution(DB polling), it is defined in META-INF/spring/async-batch-
daemon.xml to access the Job-request-table.

META-INF/spring/async-batch-daemon.xml

<bean id="adminSqlSessionFactory"
 class="org.mybatis.spring.SqlSessionFactoryBean"
 p:dataSource-ref="adminDataSource" >
 <property name="configuration">
 <bean class="org.apache.ibatis.session.Configuration"
 p:localCacheScope="STATEMENT"
 p:lazyLoadingEnabled="true"
 p:aggressiveLazyLoading="false"
 p:defaultFetchSize="1000"
 p:defaultExecutorType="REUSE"/>
 </property>
</bean>

5.2.2.1.3. Mapper XML definition

Since there is no specific explanation for TERASOLUNA Batch 5.x, please refer to the
Implementation of database access process in TERASOLUNA Server 5.x Development Guideline.

5.2.2.1.4. MyBatis-Spring setting

When using ItemReader and ItemWriter provided by MyBatis-Spring, it is necessary to set Mapper
XML used in Mapper’s Config.

Following two methods are given as setting methods.

1. Register Mapper XML to be used for all jobs as a common setting.

◦ All Mapper XML has to be described in META-INF/spring/launch-context.xml.

2. Register Mapper XML to be used for each job as individual setting.

◦ Mapper XML required by each job has to be described in bean definition under META-
INF/jobs/

If common settings are made, not only Mapper XML of jobs executed when executing synchronous
execution but also Mapper XML used by other jobs are read. As a result of this, the following
adverse effects occur.

• It takes time to start the job

• Consumption of memory resources increases

To avoid it, TERASOLUNA Batch 5.x adopts a setting method that specifies only Mapper XML that
the job requires for each job definition as individual setting.

5.2. Database Access | 201

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#dataaccessmybatis3howtodababaseaccess

For the basic setting method, please refer to MyBatis-Spring settings in TERASOLUNA Server 5.x
Development Guideline.

In TERASOLUNA Batch 5.x, since multiple SqlSessionFactory and SqlSessionTemplate are defined, it
is necessary to explicitly specify which one to use.
Basically, specify jobSqlSessionFactory

Show setting example below.

META-INF/jobs/common/jobCustomerList01.xml

<!-- (1) -->
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository.mst"
 factory-ref="jobSqlSessionFactory"/>

Description

Sr. No. Description

(1) Set jobSqlSessionFactory in factory-ref attribute of <mybatis:scan>

5.2.2.2. Input

Input of database access is explained as follows.

1. MyBatisCursorItemReader

a. Functional overview

b. How to use in chunk model

c. How to use in tasklet model

d. How to specify search condition

2. [Ch05_DBAccess_HowToUse_Input_MapperInterface]

a. Functional overview

b. How to use in chunk model

c. How to use in tasklet model

5.2.2.2.1. MyBatisCursorItemReader

Here, database access by MyBatisCursorItemReader provided by MyBatis-Spring as ItemReader is
explained.

Functional overview

MyBatis-Spring provides the following two ItemReader.

• org.mybatis.spring.batch.MyBatisCursorItemReader

• org.mybatis.spring.batch.MyBatisPagingItemReader

MyBatisPagingItemReader is an ItemReader that uses the mechanism described in Pagination search

202 | 5.2. Database Access

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#dataaccessmybatis3howtousesettingsmybatis-spring
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#entity-sql

for Entity (SQL refinement method) of TERASOLUNA Server 5.x Development Guideline.
Since SQL is issued again after acquiring a certain number of cases, there is a possibility that data
consistency may not be maintained. Therefore, it is dangerous to use it in batch processing, so
TERASOLUNA Batch 5.x does not use it in principle.
TERASOLUNA Batch 5.x uses only MyBatisCursorItemReader that uses Cursor and returns fetch data
by linking with MyBatis.

In TERASOLUNA Batch 5.x, as explained in MyBatis-Spring setting, a method to dynamically
register Mapper XML with mybatis:scan is adopted. Therefore, it is necessary to prepare an
interface corresponding to Mapper XML. For details, please refer to Implementation of database
access process in TERASOLUNA Server 5.x Development Guideline.

Notes on closing in MyBatisCursorItemReader

java.lang.NullPointerException occurs when MyBatisCursorItemReader is closed
without opening it (abnormal termination by @BeforeStep annotation) due to
problem occurred in Mybatis-Spring1.3.1. In that case, it is necessary to extend
MyBatisCursorItemReader, catch the exception at the time of closing and implement
such that it terminates normally.

Implementation example for referring database by using MyBatisCursorItemReader is explained
below for each process model.

How to use in chunk model

Implementation example for referring database using MyBatisCursorItemReader in chunk model
is shown below.
Here, implementation example of MyBatisCursorItemReader and implementation example of
ItemProcessor for processing the data fetched from database using the implemented

MyBatisCursorItemReader` are explained.

5.2. Database Access | 203

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#entity-sql
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#dataaccessmybatis3howtodababaseaccess
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#dataaccessmybatis3howtodababaseaccess

Bean definition

<!-- (1) -->
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository.mst"
 factory-ref="jobSqlSessionFactory"/>

<!-- (2) (3) (4) -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader" scope="step"

p:queryId="org.terasoluna.batch.functionaltest.app.repository.mst.CustomerRepository.f
indAll"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>
<batch:job id="outputAllCustomerList01" job-repository="jobRepository">
 <batch:step id="outputAllCustomerList01.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="retrieveBranchFromContextItemProcessor"
 writer="writer" commit-interval="10"/>
 <!-- omitted -->
 </batch:tasklet>
 </batch:step>
</batch:job>

204 | 5.2. Database Access

Mapper XML

<!-- (6) -->
<mapper
namespace="org.terasoluna.batch.functionaltest.app.repository.mst.CustomerRepository">

 <!-- omitted -->

 <!-- (7) -->
 <select id="findAll"
resultType="org.terasoluna.batch.functionaltest.app.model.mst.Customer">
 <![CDATA[
 SELECT
 customer_id AS customerId,
 customer_name AS customerName,
 customer_address AS customerAddress,
 customer_tel AS customerTel,
 charge_branch_id AS chargeBranchId,
 create_date AS createDate,
 update_date AS updateDate
 FROM
 customer_mst
 ORDER by
 charge_branch_id ASC, customer_id ASC
]]>
 </select>

 <!-- omitted -->
</mapper>

Mapper interface

public interface CustomerRepository {
 // (8)
 List<Customer> findAll();

 // omitted.
}

5.2. Database Access | 205

ItemProcessor implementation

@Component
@Scope("step")
public class RetrieveBranchFromContextItemProcessor implements ItemProcessor<Customer,
CustomerWithBranch> {
 // omitted.
 @Override
 public CustomerWithBranch process(Customer item) throws Exception { // (9)
 CustomerWithBranch newItem = new CustomerWithBranch(item);
 newItem.setBranch(branches.get(item.getChargeBranchId())); // (10)
 return newItem;
 }
}

Description

Sr. No. Description

(1) Register Mapper XML.

(2) Define MyBatisCursorItemReader.

(3) Specify the SQL ID defined in (7) with namespace + <method name> of (6) to the property of
queryId.

(4) Specify SqlSessionFactory of the database to be accessed in sqlSessionFactory-ref
property.

(5) Specify MyBatisCursorItemReader defined in (2) in reader attribute.

(6) Define Mapper XML. Match the value of namespace with the FQCN of the interface.

(7) Define SQL.

(8) Define the method corresponding to the SQL ID defined in (7) for the interface.
In this example, branchId is passed as parameter of search condition by @Param
annotation. It is not required when there is no condition.

(9) The type of item received as an argument is SalesPerformanceDetail that is input object
type specified in type argument of ItemProcessor interface implemented in this class.

How to use in tasklet model

Implementation example for referring database using MyBatisCursorItemReader in tasklet model
is shown below.
Here, implementation example of MyBatisCursorItemReader and implementation example of
Tasklet for processing the data fetched from database using the implemented

MyBatisCursorItemReader` are explained.

For the points to keep in mind while using component of chunk model in tasklet model, refer to
Tasklet implementation that uses component of Chunk model.

Unlike chunk model, in tasklet model resources should be explicitly opened/closed for Tasklet
implementation. Input data is also read explicitly.

206 | 5.2. Database Access

Bean definition

<!-- (1) -->
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository.plan"
 factory-ref="jobSqlSessionFactory"/>

<!-- (2) (3) (4) -->
<bean id="summarizeDetails" class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.functionaltest.app.repository.plan.SalesPlanDetailRepo
sitory.summarizeDetails"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<batch:job id="customizedJobExitCodeTaskletJob" job-repository="jobRepository">
 <batch:step id="customizedJobExitCodeTaskletJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
ref="checkAmountTasklet"/>
 </batch:step>
 <!-- omitted -->
</batch:job>

Mapper XML

<!-- (5) -->
<mapper
namespace="org.terasoluna.batch.functionaltest.app.repository.plan.SalesPlanDetailRepo
sitory">

 <!-- omitted -->

 <!-- (6) -->
 <select id="summarizeDetails"
resultType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanSummary">
 SELECT
 branch_id AS branchId, year, month, SUM(amount) AS amount
 FROM
 sales_plan_detail
 GROUP BY
 branch_id, year, month
 ORDER BY
 branch_id ASC, year ASC, month ASC
]]>
 </select>

</mapper>

5.2. Database Access | 207

Mapper interface

public interface SalesPlanDetailRepository {

 // (7)
 List<SalesPlanSummary> summarizeDetails();

 // omitted.
}

Tasklelet implementation

@Component
@Scope("step")
public class CheckAmountTasklet implements Tasklet {
 // (8)
 @Inject
 ItemStreamReader<SalesPlanSummary> reader;

 @Override
 public RepeatStatus execute(StepContribution contribution, ChunkContext
chunkContext) throws Exception {
 SalesPlanSummary item = null;
 List<SalesPlanSummary> items = new ArrayList<>(CHUNK_SIZE);
 int errorCount = 0;
 try {
 // (9)
 reader.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext());
 while ((item = reader.read()) != null) { // (10)
 if (item.getAmount().signum() == -1) {
 logger.warn("amount is negative. skip item [item: {}]", item);
 errorCount++;
 continue;
 }
 // omitted.
 }

 // catch block is omitted.
 } finally {
 // (11)
 reader.close();
 }
 }
 // omitted.

 return RepeatStatus.FINISHED;
}

Description

208 | 5.2. Database Access

Sr. No. Description

(1) Register Mapper XML.

(2) Define MyBatisCursorItemReader.

(3) Specify the SQL ID defined in (6) with namespace + <method name> of (5) to the property of
queryId.

(4) Specify SqlSessionFactory of the database to be accessed in sqlSessionTemplate-ref
property.

(5) Define Mapper XML. Match the value of namespace with the FQCN of the interface.

(6) Define SQL.

(7) Define the method corresponding to the SQL ID defined in (6) for the interface.

(8) Assign @Inject annotation and inject the implementation of ItemStreamReader.
Since it is necessary to open/close the target resource, inject implementation in
ItemStreamReader interface having resource open/close method in ItemReader.

(9) Open input resource.

(10) Read input data one by one.

(11) Close input resource.
Resource should always be closed. Here, when an exception occurs, the transaction of
the entire tasklet is rolled back, stack trace of the exception is output and the job ends
abnormally. Therefore, exception handling should be implemented whenever required.

How to specify search condition

When you want to search by specifying search condition while accessing database, search
conditions can be specified by fetching values from job parameters in Map format in Bean
definition and setting key. An example of job start command that specifies job parameters and
an implementation example are shown below.

Job start command when job parameters are specified.

java -cp ${CLASSPATH}
org.springframework.batch.core.launch.support.CommandLineJobRunner
 /META-INF/job/job001 job001 year=2017 month=12

5.2. Database Access | 209

Implementation example of MapperXML

<!-- (1) -->
<select id="findByYearAndMonth"

resultType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerformance
Summary">
 <![CDATA[
 SELECT
 branch_id AS branchId, year, month, amount
 FROM
 sales_performance_summary
 WHERE
 year = #{year} AND month = #{month}
 ORDER BY
 branch_id ASC
]]>
</select>

<!-- omitted -->

Bean definition

<!-- omitted -->

<!-- (2) -->
<bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader" scope="step"

p:queryId="org.terasoluna.batch.functionaltest.ch08.parallelandmultiple.repository.Sal
esSummaryRepository.findByYearAndMonth"
 p:sqlSessionFactory-ref="jobSqlSessionFactory">
 <property name="parameterValues"> <!-- (3) -->
 <map>
 <!-- (4) -->
 <entry key="year" value="#{jobParameters['year']}" value-
type="java.lang.Integer"/>
 <entry key="month" value="#{jobParameters['month']}" value-
type="java.lang.Integer"/>

 <!-- omitted -->
 </map>
 </property>
</bean>

<!-- omitted -->

Description

210 | 5.2. Database Access

Sr. No. Description

(1) Specify search condition and define the SQL to be fetched.

(2) Define ItemReader to fetch data from database.

(3) Set parameterValues in property name.

(4) Specify search conditions by fetching values to be set in search condition from job
parameters and by setting as key. Since SQL arguments are defined in numerical value,
they are passed by converting to Integer by value-type.

How to specify search by StepExectionContext

When search condition is to be specified in pre-process of job such as @beforeStep,
the values can be fetched same as JobParameters by setting to StepExecutionContext.

5.2.2.3. Mapper interface (Input)

Use Mapper interface for referring database in other than ItemReader.
Here, the reference of database using Mapper interface is explained.

Functional overview

Following restrictions are provided in TERASOLUNA Batch 5.x for using Mapper interface.

The available points of Mapper interface.

Process ItemProcessor Tasklet Listener

Referenc
e

Available Available Available

Update Conditionally available Available Unavailable

Restrictions in ItemProcessor

There is a restriction that it should not be executed with two or more ExecutorType within the
same transaction in MyBatis.
If "use MyBatisBatchItemWriter for ItemWriter" and "use ItemProcessor to update and reference
the Mapper interface" are satisfied at the same time, it conflicts with this restriction.
To avoid this restriction, database is accessed by using Mapper interface that ExecutorType is
BATCH in ItemProcessor.
In addition, MyBatisBatchItemWriter checks whether it is SQL issued by itself with the status
check after executing SQL but naturally it can not manage SQL execution by ItemProcessor and
an error will occur.
Therefore, if MyBatisBatchItemWriter is used, updating with the Mapper interface will not be
possible and only reference.

It can set to invalidate the error check of MyBatisBatchItemWriter, but the setting is
prohibited because there is a possibility that unexpected behavior may occur.

Restrictions in Tasklet

In Tasklet, since it is basic to use the Mapper interface, there is no influence like ItemProcessor.

5.2. Database Access | 211

It is possible to use MyBatisBatchItemWriter by Inject, but in that case Mapper interface itself can
be processed with BATCH setting. In other words, there is basically no need to use
MyBatisBatchItemWriter by Inject.

How to use in chunk model

Implementation example for referring the database using Mapper interface in chunk model is
shown below.

Implementation example with ItemProcessor

@Component
public class UpdateItemFromDBProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPlanDetail> {

 // (1)
 @Inject
 CustomerRepository customerRepository;

 @Override
 public SalesPlanDetail process(SalesPerformanceDetail readItem) throws Exception {

 // (2)
 Customer customer = customerRepository.findOne(readItem.getCustomerId());

 // omitted.

 return writeItem;
 }
}

Bean definition

<!-- (3) -->
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository"
 template-ref="batchModeSqlSessionTemplate"/>

<!-- (4) -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.functionaltest.app.repository.performance.SalesPerform
anceDetailRepository.findAll"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<!-- omitted job definition -->

The contents for Mapper interface and Mapper XML are omitted as they are not different than the
contents explained in MyBatisCursorItemReader.

212 | 5.2. Database Access

Description

Sr. No. Description

(1) Inject Mapper interface.

(2) Perform search process in Mapper interface.

(3) Register Mapper XML.
By specifying batchModeSqlSessionTemplate set as BATCH in template-ref attribute,
database access with ItemProcessor is BATCH.

(4) Define MyBatisCursorItemReader.
Specify SqlSessionFactory of the database to be accessed in sqlSessionFactory-ref
property.

Supplement of MyBatisCursorItemReader setting

Different ExecutorType can be used for MyBatisCursorItemReader and
MyBatisBatchItemWriter like the definition example below. This is because the
transaction by MyBatisCursorItemReader is different from the transaction of
ItemWriter.

<bean id="reader"
class="org.mybatis.spring.batch.MyBatisCursorItemReader"
 p:queryId="xxx"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<bean id="writer"
class="org.mybatis.spring.batch.MyBatisBatchItemWriter"
 p:statementId="yyy"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

5.2.2.3.1. How to use in tasklet model::

Implementation example for referring the database using Mapper interface in tasklet model is
shown below..

5.2. Database Access | 213

Implementation example with Tasklet

@Component
public class OptimisticLockTasklet implements Tasklet {

 // (1)
 @Inject
 ExclusiveControlRepository repository;

 // omitted.

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 Branch branch = repository.branchFindOne(branchId); // (2)
 ExclusiveBranch exclusiveBranch = new ExclusiveBranch();

 // omitted.

 return RepeatStatus.FINISHED;
 }
}

Bean definition

<!-- (3) -->
<mybatis:scan
 base-
package="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository"
 factory-ref="jobSqlSessionFactory"/>

<batch:job id="taskletOptimisticLockCheckJob" job-repository="jobRepository">
 <batch:step id="taskletOptimisticLockCheckJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="optimisticLockTasklet"> <!-- (4) -->
 </batch:tasklet>
 </batch:step>
</batch:job>

The contents for Mapper interface and Mapper XML are omitted as they are not different than the
contents explained in MyBatisCursorItemReader.

Description

Sr. No. Description

(1) Inject Mapper interface.

(2) Execute the search process with the Mapper interface.

214 | 5.2. Database Access

Sr. No. Description

(3) Register Mapper XML.
Specify jobSqlSessionFactory set as REUSE in factory-ref attribute.

(4) Inject Mapper interface and set Tasklet.

5.2.2.4. Output

The output of database access is explained as follows.

1. MyBatisBatchItemWriter

a. Functional overview

b. How to use in chunk model

c. How to use in tasklet model

2. Mapper interface (Output)

a. Functional overview

b. How to use in chunk model

c. How to use in tasklet model

5.2.2.4.1. MyBatisBatchItemWriter

Here, database access by MyBatisBatchItemWriter provided by MyBatis-Spring as ItemWriter is
explained.

Functional overview

MyBatis-Spring provides only one ItemWriter as shown below.

• org.mybatis.spring.batch.MyBatisBatchItemWriter

MyBatisBatchItemWriteris an ItemWriter that uses batch update function of JDBC by linking with
MyBatis and performance is expected to be improved when updating large amount of data at a
time.
Basic configuration is same as MyBatisCursorItemReader. In MyBatisBatchItemWriter,
batchModeSqlSessionTemplate described in MyBatis Setting should be specified.

Implementation example for updating database using MyBatisBatchItemWriter is shown below.

How to use in chunk model

Implementation example for updating (registering) database using MyBatisBatchItemWriter in
chunk model is shown below.
Here, implementation example of MyBatisBatchItemWriter and implementation example of
ItemProcessor that uses the implemented MyBatisBatchItemWriter are explained. The data fetched
in ItemProcessor implementation is updated in database using MyBatisBatchItemWriter.

5.2. Database Access | 215

Bean definition

<!-- (1) -->
<mybatis:scan
 base-
package="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository"
 factory-ref="jobSqlSessionFactory"/>

<!-- (2) (3) (4) -->
<bean id="writer"
 class="org.mybatis.spring.batch.MyBatisBatchItemWriter" scope="step"

p:statementId="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository.Ex
clusiveControlRepository.branchExclusiveUpdate"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"
 p:assertUpdates="#{new Boolean(jobParameters['assertUpdates'])}"/>

<batch:job id="chunkOptimisticLockCheckJob" job-repository="jobRepository">
 <batch:step id="chunkOptimisticLockCheckJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" processor="branchEditItemProcessor"
 writer="writer" commit-interval="10"/> <!-- (5) -->
 </batch:tasklet>
 </batch:step>
</batch:job>

Mapper XML

<!-- (6) -->
<mapper
namespace="org.terasoluna.batch.functionaltest.app.repository.plan.SalesPlanDetailRepo
sitory">

 <!-- (7) -->
 <insert id="create"

parameterType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail">
 <![CDATA[
 INSERT INTO
 sales_plan_detail(branch_id, year, month, customer_id, amount)
 VALUES (
 #{branchId}, #{year}, #{month}, #{customerId}, #{amount}
)
]]>
 </insert>

 <!-- omitted -->
</mapper>

216 | 5.2. Database Access

Mapper interface

public interface SalesPlanDetailRepository {

 // (8)
 void create(SalesPlanDetail salesPlanDetail);

 // omitted.
}

ItemProcessor implementation

@Component
@Scope("step")
public class BranchEditItemProcessor implements ItemProcessor<Branch, ExclusiveBranch>
{
 // omitted.

 @Override
 public ExclusiveBranch process(Branch item) throws Exception { // (9)
 ExclusiveBranch branch = new ExclusiveBranch();
 branch.setBranchId(item.getBranchId());
 branch.setBranchName(item.getBranchName() + " - " + identifier);
 branch.setBranchAddress(item.getBranchAddress() + " - " + identifier);
 branch.setBranchTel(item.getBranchTel());
 branch.setCreateDate(item.getUpdateDate());
 branch.setUpdateDate(new Timestamp(clock.millis()));
 branch.setOldBranchName(item.getBranchName());

 // (10)
 return branch;
 }
}

Description

Sr. No. Description

(1) Register Mapper XML.

(2) Define MyBatisBatchItemWriter.

(3) Specify the SQL ID defined in (7) with namespace + <method name> of (6) to the property of
statementId.

(4) Specify SessionTemplate of the database to be accessed in sqlSessionTemplate-ref
property.
For SessionTemplate to be specified, it is mandatory to set executorType to BATCH.

(5) Specify MyBatisBatchItemWriter defined in (2) in writer attribute.

(6) Define Mapper XML. Match the value of namespace with the FQCN of the interface.

5.2. Database Access | 217

Sr. No. Description

(7) Define SQL.

(8) Define the method corresponding to the SQL ID defined in (7) in interface.

(9) The return value type is ExclusiveBranch that is output object specified in ItemProcessor
interface type argument implemented in this class.

(10) By returning DTO object that sets update data, output the data to database.

How to use in tasklet model

Implementation example for updating (registering) database using MyBatisBatchItemWriter in
tasklet model is shown below.
Here, implementation example of MyBatisBatchItemWriter and implementation example of
Tasklet using the implemented MyBatisBatchItemWriter are explained. For the points to keep in
mind while using component of chunk model in tasklet model, refer to Tasklet implementation
that uses component of Chunk model.

Bean definition

<!-- (1) -->
<mybatis:scan base-package="org.terasoluna.batch.functionaltest.app.repository.plan"
 factory-ref="jobSqlSessionFactory"/>

<!-- (2) (3) (4) -->
<bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.functionaltest.app.repository.plan.SalesPlanDetail
Repository.create"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

<batch:job id="taskletJobWithListenerWithinJobScope" job-repository="jobRepository">
 <batch:step id="taskletJobWithListenerWithinJobScope.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
ref="salesPlanDetailRegisterTasklet"/>
 </batch:step>
 <!-- omitted. -->
</batch:job>

218 | 5.2. Database Access

Mapper XML

<!-- (5) -->
<mapper
namespace="org.terasoluna.batch.functionaltest.app.repository.plan.SalesPlanDetailRepo
sitory">

 <!-- (6) -->
 <insert id="create"
parameterType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail">
 <![CDATA[
 INSERT INTO
 sales_plan_detail(branch_id, year, month, customer_id, amount)
 VALUES (
 #{branchId}, #{year}, #{month}, #{customerId}, #{amount}
)
]]>
 </insert>

 <!-- omitted -->
</mapper>

Mapper interface

public interface SalesPlanDetailRepository {
 // (7)
 void create(SalesPlanDetail salesPlanDetail);

 // omitted.
}

5.2. Database Access | 219

Tasklet implementation

@Component
@Scope("step")
public class SalesPlanDetailRegisterTasklet implements Tasklet {

 // omitted.

 // (8)
 @Inject
 ItemWriter<SalesPlanDetail> writer;

 @Override
 public RepeatStatus execute(StepContribution contribution, ChunkContext
chunkContext) throws Exception {
 SalesPlanDetail item = null;

 try {
 reader.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext());

 List<SalesPlanDetail> items = new ArrayList<>(); // (9)

 while ((item = reader.read()) != null) {

 items.add(processor.process(item)); // (10)
 if (items.size() == 10) {
 writer.write(items); // (11)
 items.clear();
 }
 }
 // omitted.
 }
 // omitted.

 return RepeatStatus.FINISHED;
 }
}

The contents for Mapper interface and Mapper XML are omitted as they are not different than the
contents explained in MyBatisBatchItemWriter.

Description

Sr. No. Description

(1) Register Mapper XML.

(2) Define MyBatisBatchItemWriter.

(3) Specify the SQL ID defined in (6) with namespace + <method name> of (5) to the property of
statementId.

220 | 5.2. Database Access

Sr. No. Description

(4) Specify SessionTemplate of the database to be accessed in sqlSessionTemplate-ref
property.
It is mandatory to set executorType to BATCH for SessionTemplate to be specified.

(5) Define Mapper XML. Match the value of namespace with the FQCN of the interface.

(6) Define SQL.

(7) Define the method corresponding to the SQL ID defined in (6) for the interface.

(8) Assign @Inject annotation and inject ItemWriter implementation.
Unlike ItemReader, open/close of resource is not required for updating database so inject
in ItemWriter interface and not ItemStreamWriter.

(9) Define list that stores output data.
ItemWriter outputs fixed number of data collectively.

(10) Set update data in list.

(11) Specify the list wherein update data is set, as an argument and output to database.

5.2.2.4.2. Mapper interface (Output)

Use Mapper interface for updating the database except for ItemWriter.
Here, database update using Mapper interface is described.

Functional overview

For the restrictions on TERASOLUNA Batch 5.x after database is accessed by using Mapper
interface, refer to [Ch05_DBAccess_HowToUse_Input_MapperInterface].

How to use in chunk model

Implementation example for updating (registering) database using Mapper interface in chunk
model is shown below.

5.2. Database Access | 221

Implementation example with ItemProcessor

@Component
public class UpdateCustomerItemProcessor implements ItemProcessor<Customer, Customer>
{

 // omitted.

 // (1)
 @Inject
 DBAccessCustomerRepository customerRepository;

 @Override
 public Customer process(Customer item) throws Exception {
 item.setCustomerName(String.format("%s updated by mapper if", item
.getCustomerName()));
 item.setCustomerAddress(String.format("%s updated by item writer", item
.getCustomerAddress()));
 item.setUpdateDate(new Timestamp(clock.millis()));

 // (2)
 long cnt = customerRepository.updateName(item);

 // omitted.

 return item;
 }
}

222 | 5.2. Database Access

Bean definition

<!-- (3) -->
<mybatis:scan
 base-
package="org.terasoluna.batch.functionaltest.ch05.dbaccess.repository;org.terasoluna.b
atch.functionaltest.app.repository"
 template-ref="batchModeSqlSessionTemplate"/>

<!-- (4) -->
<bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.functionaltest.app.repository.plan.SalesPlanDetail
Repository.create"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

 <batch:job id="updateMapperAndItemWriterBatchModeJob" job-
repository="jobRepository">
 <batch:step id="updateMapperAndItemWriterBatchModeJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="updateCustomerItemProcessor"
 writer="writer" commit-interval="10"/> <!-- (5) -->
 </batch:tasklet>
 </batch:step>
 <!-- omitted -->
</batch:job>

The contents for Mapper interface and Mapper XML are omitted as they are not different than the
contents explained in MyBatisBatchItemWriter.

Description

Sr. No. Description

(1) Inject Mapper interface.

(2) Generate DTO object, set update data and update database by returning DTO object.

(3) Register Mapper XML.
By specifying batchModeSqlSessionTemplate set as BATCH in template-ref attribute,
database access with ItemProcessor is BATCH. Here, when factory-
ref="jobSqlSessionFactory" is set, it conflicts with the earlier mentioned restriction
causing an exception at the time of executing MyBatisBatchItemWriter.

(4) Define MyBatisBatchItemWriter.
Specify batchModeSqlSessionTemplate set as BATCH in sqlSessionTemplate-ref property.

(5) Specify MyBatisBatchItemWriter defined in (4) in writer attribute.

How to use in tasklet model

Implementation example for updating (registering) database using Mapper interface in tasklet

5.2. Database Access | 223

model is shown below.

Implementation example of Tasklet

@Component
public class OptimisticLockTasklet implements Tasklet {

 // (1)
 @Inject
 ExclusiveControlRepository repository;

 // omitted.

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 Branch branch = repository.branchFindOne(branchId);

 // (2)
 ExclusiveBranch exclusiveBranch = new ExclusiveBranch();
 exclusiveBranch.setBranchId(branch.getBranchId());
 exclusiveBranch.setBranchName(branch.getBranchName() + " - " + identifier);
 exclusiveBranch.setBranchAddress(branch.getBranchAddress() + " - " +
identifier);
 exclusiveBranch.setBranchTel(branch.getBranchTel());
 exclusiveBranch.setCreateDate(branch.getUpdateDate());
 exclusiveBranch.setUpdateDate(new Timestamp(clock.millis()));
 exclusiveBranch.setOldBranchName(branch.getBranchName());

 // (3)
 int result = repository.branchExclusiveUpdate(exclusiveBranch);

 // omitted.

 return RepeatStatus.FINISHED;
 }
}

224 | 5.2. Database Access

Bean definition

<!-- (4) -->
<mybatis:scan
 base-
package="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository"
 factory-ref="jobSqlSessionFactory"/>

<batch:job id="taskletOptimisticLockCheckJob" job-repository="jobRepository">
 <batch:step id="taskletOptimisticLockCheckJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="optimisticLockTasklet"> <!-- (5) -->
 </batch:tasklet>
 </batch:step>
</batch:job>

Mapper interface and Mapper XML are omitted.

Description

Sr. No. Description

(1) Inject Mapper interface.

(2) Generate DTO object and set update data.

(3) Specify DTO object wherein update data is set, as an argument and execute update
process in Mapper intrface.

(4) Register Mapper XML.
Specify jobSqlSessionFactory set as REUSE in factory-ref attribute.

(5) Inject Mapper interface and set Tasklet.

5.2.2.5. Database access with Listener

Database access with listener is often linked with other components. Depending on the listener to
be used and the implementation method, it is necessary to prepare additional mechanism to hand
over the fetched data in Mapper interface to other components.

There are following restrictions for implementing database access using Mapper interface in
listener.

Restrictions in listener

There are same restictions as that in ItemProcessor even in Listener. In addition, for listeners,
use cases requiring updates are difficult to think. Therefore, update processing is not
recommended in the listener.

5.2. Database Access | 225

Replace update process assumed in listener

Job status management

It is performed by JobRepository of Spring Batch

Log output to database

It should be implemented in Appender of log. It should be managed separately
from the transaction of job.

Here, an example of fetching the data before executing steps in StepExecutionListener and using
the data fetched in ItemProcessor is shown.

Implementation example with Listener

public class CacheSetListener extends StepExecutionListenerSupport {

 // (1)
 @Inject
 CustomerRepository customerRepository;

 // (2)
 @Inject
 CustomerCache cache;

 @Override
 public void beforeStep(StepExecution stepExecution) {
 // (3)
 for(Customer customer : customerRepository.findAll()) {
 cache.addCustomer(customer.getCustomerId(), customer);
 }
 }
}

226 | 5.2. Database Access

Application example with ItemProcessor

@Component
public class UpdateItemFromCacheProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPlanDetail> {

 // (4)
 @Inject
 CustomerCache cache;

 @Override
 public SalesPlanDetail process(SalesPerformanceDetail readItem) throws Exception {
 Customer customer = cache.getCustomer(readItem.getCustomerId()); // (5)

 SalesPlanDetail writeItem = new SalesPlanDetail();

 // omitted.
 writerItem.setCustomerName(customer.getCustomerName); // (6)

 return writeItem;
 }
}

Cache class

// (7)
@Component
public class CustomerCache {

 Map<String, Customer> customerMap = new HashMap<>();

 public Customer getCustomer(String customerId) {
 return customerMap.get(customerId);
 }

 public void addCustomer(String id, Customer customer) {
 customerMap.put(id, customer);
 }
}

5.2. Database Access | 227

Bean definition

<!-- omitted -->

<!-- (8) -->
<mybatis:scan
 base-package="org.terasoluna.batch.functionaltest.app.repository"
 template-ref="batchModeSqlSessionTemplate"/>
<!-- (9) -->
<bean id="cacheSetListener"
 class="org.terasoluna.batch.functionaltest.ch05.dbaccess.CacheSetListener"/>

<!-- omitted -->

<batch:job id="DBAccessByItemListener" job-repository="jobRepository">
 <batch:step id="DBAccessByItemListener.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="updateItemFromCacheProcessor"
 writer="writer" commit-interval="10"/> <!-- (10) -->
 <!-- (11) -->
 <batch:listeners>
 <batch:listener ref="cacheSetListener"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr. No. Description

(1) Inject Mapper interface.

(2) Inject a bean for caching data acquired from the Mapper interface.

(3) Get data from the Mapper interface and cache it at the listener.
In this case, I/O is reduced and processing efficiency is improved by creating a cache
before step execution with StepExecutionListener#beforeStep and referring to the cache
in the subsequent processing.

(4) Inject the same bean as the cache set in (2).

(5) Get corresponding data from the cache.

(6) Reflect the data from the cache in the update data.

(7) Implement the cache class as a component.
The Bean scope is singleton in here. Please set according to job.

(8) Register Mapper XML.
Specify batchModeSqlSessionTemplate set as BATCH in template-ref attribute.

(9) Define the listener that uses the Mapper interface.

228 | 5.2. Database Access

(10) Specify ItemProcessor that uses cache.

(11) Register the listener defined in (9).

Using SqlSessionFactory with the Listener

In the above example, batchModeSqlSessionTemplate is set, but jobSqlSessionFactory
also can be set.

For listeners that run outside the scope of chunks, since it is processed outside the
transaction, setting jobSqlSessionFactory does not matter.

5.2.3. How To Extend

5.2.3.1. Updating multiple tables in CompositeItemWriter

In a chunk model, when multiple tables are to be updated for 1 input data, it can be achieved by
using CompositeItemWriter provided by Spring Batch and linking MyBatisBatchItemWriter
corresponding to each table.

An implementation example wherein two tables of sales plan and actual sales are updated, is
shown here.

Implementation example of ItemProcessor

@Component
public class SalesItemProcessor implements ItemProcessor<SalesPlanDetail, SalesDTO> {
 @Override
 public SalesDTO process(SalesPlanDetail item) throws Exception { // (1)

 SalesDTO salesDTO = new SalesDTO();

 // (2)
 SalesPerformanceDetail spd = new SalesPerformanceDetail();
 spd.setBranchId(item.getBranchId());
 spd.setYear(item.getYear());
 spd.setMonth(item.getMonth());
 spd.setCustomerId(item.getCustomerId());
 spd.setAmount(new BigDecimal(0L));
 salesDTO.setSalesPerformanceDetail(spd);

 // (3)
 item.setAmount(item.getAmount().add(new BigDecimal(1L)));
 salesDTO.setSalesPlanDetail(item);

 return salesDTO;
 }
}

5.2. Database Access | 229

Implementation example of DTO

public class SalesDTO implements Serializable {

 // (4)
 private SalesPlanDetail salesPlanDetail;

 // (5)
 private SalesPerformanceDetail salesPerformanceDetail;

 // omitted
}

Implementation example of MapperXML

<mapper
namespace="org.terasoluna.batch.functionaltest.ch05.dbaccess.repository.SalesRepositor
y">

 <select id="findAll"
resultType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail">
 <![CDATA[
 SELECT
 branch_id AS branchId, year, month, customer_id AS customerId, amount
 FROM
 sales_plan_detail
 ORDER BY
 branch_id ASC, year ASC, month ASC, customer_id ASC
]]>
 </select>

 <!-- (6) -->
 <update id="update"
parameterType="org.terasoluna.batch.functionaltest.ch05.dbaccess.SalesDTO">
 <![CDATA[
 UPDATE
 sales_plan_detail
 SET
 amount = #{salesPlanDetail.amount}
 WHERE
 branch_id = #{salesPlanDetail.branchId}
 AND
 year = #{salesPlanDetail.year}
 AND
 month = #{salesPlanDetail.month}
 AND
 customer_id = #{salesPlanDetail.customerId}
]]>
 </update>

230 | 5.2. Database Access

 <!-- (7) -->
 <insert id="create"
parameterType="org.terasoluna.batch.functionaltest.ch05.dbaccess.SalesDTO">
 <![CDATA[
 INSERT INTO
 sales_performance_detail(
 branch_id,
 year,
 month,
 customer_id,
 amount
)
 VALUES (
 #{salesPerformanceDetail.branchId},
 #{salesPerformanceDetail.year},
 #{salesPerformanceDetail.month},
 #{salesPerformanceDetail.customerId},
 #{salesPerformanceDetail.amount}
)
]]>
 </insert>

</mapper>

5.2. Database Access | 231

Application example of CompositeItemWriter

<!-- reader using MyBatisCursorItemReader -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.functionaltest.ch05.dbaccess.repository.SalesRepositor
y.findAll"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<!-- writer MyBatisBatchItemWriter -->
<!-- (8) -->
<bean id="planWriter" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.functionaltest.ch05.dbaccess.repository.SalesRepos
itory.update"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

<!-- (9) -->
<bean id="performanceWriter" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.functionaltest.ch05.dbaccess.repository.SalesRepos
itory.create"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

<!-- (10) -->
<bean id="writer" class="org.springframework.batch.item.support.CompositeItemWriter">
 <property name="delegates">
 <!-- (11)-->
 <list>
 <ref bean="performanceWriter"/>
 <ref bean="planWriter"/>
 </list>
 </property>
</bean>

<!-- (12) -->
<batch:job id="useCompositeItemWriter" job-repository="jobRepository">
 <batch:step id="useCompositeItemWriter.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="salesItemProcessor"
 writer="writer" commit-interval="3"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr. No. Description

232 | 5.2. Database Access

(1) Implement ItemProcessor with DTO as output which retains each entity for updating
both the tables for input data.
Since different objects cannot be passed in ItemWriter for updating 2 tables, a DTO which
consolidates objects necessary for update is defined.

(2) Create an entity for creating a new actual sales record (SalesPerformanceDetail) and
store in DTO.

(3) Update input data for updating sales plan which is also input data (SalesPlanDetail) and
store it in DTO.

(4) Define in DTO so as to retain a sales plan (SalesPlanDetail).

(5) Define in DTO so as to retain actual sales record (SalesPerformanceDetail).

(6) Define a SQL to update sales plan table (sales_plan_detail) in sales plan (SalesPlanDetail)
fetched from DTO.

(7) Define a SQL to create a new actual sales table (sales_performance_detail) in actual sales
(SalesPlanDetail) fetched from DTO.

(8) Define MyBatisBatchItemWriter which updates sales plan table (sales_plan_detail).

(9) Define MyBatisBatchItemWriter which creates a new actual sales table
(sales_performance_detail).

(10) Define CompositeItemWriter in order to execute (8) and (9) sequentially.

(11) Set (8) and (9) in <list> tag. ItemWriter is executed in the specified order.

(12) Specify the Bean defined in (10), in writer attribute of chunk. Specify ItemProcessor of
(1) in processor attribute.

It can also be updated for multiple data sources by using it together with
org.springframework.data.transaction.ChainedTransactionManager which is
explained in Output to multiple data sources (1 step).

Further, since CompositeItemWriter can be linked in case of ItemWriter
implementation, it can be done along with database output and file output by
setting MyBatisBatchItemWriter and FlatFileItemWriter.

5.2.3.2. How to specify search condition

When you want to search by specifying search condition while accessing database, search
conditions can be specified by fetching values from job parameters in Map format in Bean
definition and setting key. An example of job start command that specifies job parameters and an
implementation example are shown below.

Job start command when job parameters are specified.

java -cp ${CLASSPATH}
org.springframework.batch.core.launch.support.CommandLineJobRunner
 /META-INF/job/job001 job001 year=2017 month=12

5.2. Database Access | 233

Implementation example of MapperXML

<!-- (1) -->
<select id="findByYearAndMonth"

resultType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerformance
Summary">
 <![CDATA[
 SELECT
 branch_id AS branchId, year, month, amount
 FROM
 sales_performance_summary
 WHERE
 year = #{year} AND month = #{month}
 ORDER BY
 branch_id ASC
]]>
</select>

<!-- omitted -->

Bean definition

<!-- omitted -->

<!-- (2) -->
<bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader" scope="step"

p:queryId="org.terasoluna.batch.functionaltest.ch08.parallelandmultiple.repository.Sal
esSummaryRepository.findByYearAndMonth"
 p:sqlSessionFactory-ref="jobSqlSessionFactory">
 <property name="parameterValues"> <!-- (3) -->
 <map>
 <!-- (4) -->
 <entry key="year" value="#{jobParameters['year']}" value-
type="java.lang.Integer"/>
 <entry key="month" value="#{jobParameters['month']}" value-
type="java.lang.Integer"/>

 <!-- omitted -->
 </map>
 </property>
</bean>

<!-- omitted -->

Description

234 | 5.2. Database Access

Sr. No. Description

(1) Specify search condition and define the SQL to be fetched.

(2) Define ItemReader to fetch data from database.

(3) Set parameterValues in property name.

(4) Specify search conditions by fetching values to be set in search condition from job
parameters and by setting as key. Since SQL arguments are defined in numerical value,
they are passed by converting to Integer by value-type.

How to specify search by StepExectionContext

When search condition is to be specified in pre-process of job such as @beforeStep,
the values can be fetched same as JobParameters by setting to StepExecutionContext.

5.2. Database Access | 235

5.3. File Access

5.3.1. Overview

This chapter describes how to input and output files.

The usage method of this function is same in the chunk model as well as tasklet model.

5.3.1.1. Type of File which can be handled

Type of File which can be handled

The files that can be handled with TERASOLUNA Batch 5.x are as follows.
Files are same as the files handled by Spring Batch.

• Flat File

• XML

How to input/output a flat file is explained here and and then explanation about XML is given in
How To Extend.

First, the types of flat files which can be used with TERASOLUNA Batch 5.x are shown.
Each row inside the flat file will be called record, and type of file is determined by the record’s
format.

Record Format

Format Overview

Variable-length Record Record format where each item is separated by a delimiter, such as
CSV and TSF. Length of each item can be variable.

Fixed-length Record Record format where each item is separated by the item
length(bytes). The length of each item is fixed.

Single String Record A format that treats one record as one string.

File Structure which can be handled

The basic structure for flat file consists of two points.

• Record Division

• Record Format

Elements to construct format of Flat File

Element Overview

Record Division A division will indicate the type of record, such as Header Record,
Data Record, and Trailer Record.
Details will be described later.

236 | 5.3. File Access

Element Overview

Record Format The structure of the record indicates the number of rows of header,
data, trailer records, and whether header part ~ trailer part is
repeated.
There is also Single Format and Multi Format.Details will be
described later.

TERASOLUNA Batch 5.x can handle single format and multi format flat files with various record
classifications.

Various record types and record formats are explained.

Overview of various records is explained as below.

Characteristic of each Record Division

Record Division Overview

Header Record A record that is added at the beginning of the file (data part).
It has items such as field names, common matters of the file, and
summary of the data part.

Data Record It is a record having data to be processed as a main object of the file.

Trailer/Footer Record A record that is added at the end of the file (data part).
It has items such as common matters of the file and summary of the
data part.
In the case of a single format file, it is sometimes called a footer
record.

Footer/End Record A record that is mentioned at the end of the file if the file is a Multi
Format.
It has items such as common matters of the file and summary of the
data part.

About the field that indicates the record division

A flat file having a header record or a trailer record may have a field indicating a
record division.
In TERASOLUNA Batch 5.x, especially in the processing of multi-format files, the
record division field is utilized, for example when different processing is
performed for each record division.
Refer to Multi format for the implementation when selecting the processing to be
executed by record classification.

About the name of file format

Depending on the definition of the file format in each system, a name different
from guidelines such as calling a footer record as an end record or the like is used
in some cases.
Must be read as appropriate.

5.3. File Access | 237

A summary of Single Format and Multi Format is shown below.

Overview of Single Format and Multi Format

Format Overview

Single Format A format with Header N Rows + Data N Rows + Trailer N Rows.

Multi Format A format with (Header N Rows + Data N Rows + Trailer N Rows) * N
+ Footer N Rows.
A format in which a footer record is added after repeating a single
format multiple times.

The Multi Format record structure is shown in the figure as follows.

Multi Format Rrecord Structure Diagram

An example of a Single Format and Multi Format flat file is shown below.
// is used as a comment-out character for the description of the file.

Example of Single Format, flat file(CSV format) without record division

branchId,year,month,customerId,amount // (1)
000001,2016,1,0000000001,100000000 // (2)
000001,2016,1,0000000002,200000000 // (2)
000001,2016,1,0000000003,300000000 // (2)
000001,3,600000000 // (3)

238 | 5.3. File Access

Item list of file contents

No Descriptions

(1) A header record
Field name of the data part is described.

(2) A data record.

(3) A trailer record.
It holds summary information of the data part.

Example of Multi Format, flat file(CSV format) with record division

// (1)
H,branchId,year,month,customerId,amount // (2)
D,000001,2016,1,0000000001,100000000
D,000001,2016,1,0000000002,200000000
D,000001,2016,1,0000000003,300000000
T,000001,3,600000000
H,branchId,year,month,customerId,amount // (2)
D,00002,2016,1,0000000004,400000000
D,00002,2016,1,0000000005,500000000
D,00002,2016,1,0000000006,600000000
T,00002,3,1500000000
H,branchId,year,month,customerId,amount // (2)
D,00003,2016,1,0000000007,700000000
D,00003,2016,1,0000000008,800000000
D,00003,2016,1,0000000009,900000000
T,00003,3,2400000000
F,3,9,4500000000 // (3)

Item list of file contents

No Descriptions

(1) It has a field indicating the record division at the beginning of the record.
Each record division is defined as below.
H：Header Record
D：Data Record
T：Trailer Record
F：Footer Record

(2) Every time branchId changes, it repeats header, data, trailer.

(3) A footer record.
It holds summary information for the whole file.

5.3. File Access | 239

Assumptions on format of data part

In How To Use, it will explain on the premise that the layout of the data part is the
same format.
This means that all the records of the data part are mapped to the same conversion
target class

About explanation of Multi Format file

• In How To Use, it will describe about the Single Format file.

• For flat files having Multi Format or a structure including a footer part in the
above structure, refer to How To Extend

5.3.1.2. A component that inputs and outputs a flat file

A class for handling flat file is shown.

Input

The relationships of classes used for input of flat files is given as below.

Relationship of classes used for input of flat files

The calling relationship of each component is as follows.

240 | 5.3. File Access

Calling relationship of each component

Details of each component are shown below.

org.springframework.batch.item.file.FlatFileItemReader

Implementation class of ItemReader to use for loading flat files. Use the following components.
The flow of simple processing is as follows.
1.Use BufferedReaderFactory to get BufferedReader.
2.Read one record from the flat file using the acquired BufferedReader.
3.Use LineMapper to map one record to the target bean.

org.springframework.batch.item.file.BufferedReaderFactory

Generate BufferedReader to read the file.

org.springframework.batch.item.file.LineMapper

One record is mapped to the target bean. Use the following components.
The flow of simple processing is as follows.
1.Use LineTokenizer to split one record into each item.
2.Mapping items split by FieldSetMapper to bean properties.

org.springframework.batch.item.file.transform.LineTokenizer

Divide one record acquired from the file into each item.
Each partitioned item is stored in FieldSet class.

org.springframework.batch.item.file.mapping.FieldSetMapper

Map each item in one divided record to the property of the target bean.

Output

The relationships of classes used for output of flat files is given as below.

5.3. File Access | 241

Relationship of classes used for output of flat files

The calling relationship of each component is as follows.

Calling relationship of each component

org.springframework.batch.item.file.FlatFileItemWriter

Implementation class of ItemWriter for exporting to a flat file. Use the following components.
LineAggregator target bean maps to one record.

org.springframework.batch.item.file.transform.LineAggregator

It is used to map the target bean to one record. The mapping between the properties of the
bean and each item in the record is done in FieldExtractor.

org.springframework.batch.item.file.transform.FieldExtractor

Map the property of the target bean to each item in one record.

5.3.2. How To Use

How to use according to the record format of the flat file is explained.

• Variable-length record

• Fixed-length record

• Single String record

Then, the following items are explained.

• Header and Footer

242 | 5.3. File Access

• Multiple Files

• Control Break

5.3.2.1. Variable-length record

Describe the definition method when dealing with variable-length record file.

5.3.2.1.1. Input

An example of setting for reading the following input file is shown.

Input File Sample

000001,2016,1,0000000001,1000000000
000002,2017,2,0000000002,2000000000
000003,2018,3,0000000003,3000000000

Class to be converted

public class SalesPlanDetail {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

The setting for reading the above file is as follows.

5.3. File Access | 243

Bean definition example

<!-- (1) (2) (3) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="MS932"
 p:strict="true">
 <property name="lineMapper"> <!-- (4) -->
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer"> <!-- (5) -->
 <!-- (6) (7) (8) -->
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="branchId,year,month,customerId,amount"
 p:delimiter=","
 p:quoteCharacter='"'/>
 </property>
 <property name="fieldSetMapper"> <!-- (9) -->
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail"/>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the input file. Nothing

(2) encoding Sets the character code of the input file.
 Default value of the character code of the
component offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemWriter is "UTF-8").
Hence, it is recommended to explicitly set
character code even while using default
value.

JavaVM’s default
character set

(3) strict If true is set, an exception occurs if the
input file does not exist(can not be opened).

true

244 | 5.3. File Access

No Property Name Setting contents Require
d

Default Value

(4) lineMapper Set
org.springframework.batch.item.file.mappi
ng.DefaultLineMapper.
DefaultLineMapper is LineMapper which
provides the basic operation of converting
records to the class to be converted using
the defined LineTokenizer and
FieldSetMapper.

 Nothing

(5) lineTokenizer Set
org.springframework.batch.item.file.trans
form.DelimitedLineTokenizer.
DelimitedLineTokenizer is an
implementation class of LineTokenizer that
separates records by specifying delimiters.
It corresponds to the reading of escaped
line feeds, delimiters, and enclosed
characters defined in the specification of
RFC-4180, which is a general format of CSV
format.

 Nothing

(6) names Give a name to each item of one record.
Each item can be retrieved using the name
set in FieldSet used in FieldSetMapper.
Set each name from the beginning of the
record with a comma separator.
When using BeanWrapperFieldSetMapper, it is
mandatory setting.

Nothing

(7) delimiter Set delimiter comma

(8) quoteCharacter Set enclosing character Nothing

(9) fieldSetMapper If special conversion processing such as
character strings and numbers is
unnecessary, use
org.springframework.batch.item.file.mappi
ng.BeanWrapperFieldSetMapper, and specify
the class to be converted to property
targetType. By doing this, an instance that
automatically sets the value in the field that
matches the name of each item set in (5)
will be created.
If conversion processing is necessary, set
the implementation class of
org.springframework.batch.item.file.mappi
ng.FieldSetMapper.

 Nothing

 See How To Extend for the case of implementing FieldSetMapper yourself.

5.3. File Access | 245

How to enter TSV format file

When a TSV file is to be read, it can be realized by setting a tab as a delimiter.

TSV file loading: Example of delimiter setting (setting by constant)

<property name="delimiter">
 <util:constant
 static-
field="org.springframework.batch.item.file.transform.DelimitedLineToken
izer.DELIMITER_TAB"/>
</property>

Or, it may be as follows.

TSV file reading: Example of delimiter setting (setting by character reference)

<property name="delimiter" value="	"/>

5.3.2.1.2. Output

An example of setting for writing the following output file is shown.

Output file example

001,CustomerName001,CustomerAddress001,11111111111,001
002,CustomerName002,CustomerAddress002,11111111111,002
003,CustomerName003,CustomerAddress003,11111111111,003

Class to be converted

public class Customer {

 private String customerId;
 private String customerName;
 private String customerAddress;
 private String customerTel;
 private String chargeBranchId;
 private Timestamp createDate;
 private Timestamp updateDate;

 // omitted getter/setter
}

The settings for writing the above file are as follows.

246 | 5.3. File Access

Bean definition example

<!-- Writer -->
<!-- (1) (2) (3) (4) (5) (6) (7) -->
<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="MS932"
 p:lineSeparator="
"
 p:appendAllowed="true"
 p:shouldDeleteIfExists="false"
 p:shouldDeleteIfEmpty="false"
 p:transactional="true">
 <property name="lineAggregator"> <!-- (8) -->
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator"
 p:delimiter=","> <!-- (9) -->
 <property name="fieldExtractor"> <!-- (10) -->
 <!-- (11) -->
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"

p:names="customerId,customerName,customerAddress,customerTel,chargeBranchId"/>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the output file. Nothing

(2) encoding Sets the character code of the output file.
 Default value of character code of the
components offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemReader is "default character
set of JavaVM").
Hence, it is recommended to explicitly set
character code even while using default
value.

UTF-8

(3) lineSeparator Set record break (line feed code). line.separator of
system’s property

(4) appendAllowed If true, add to the existing file.
 If true, it must be noted that setting
value of shouldDeleteIfExists is invalidated.

false

5.3. File Access | 247

No Property Name Setting contents Require
d

Default Value

(5) shouldDeleteIfExis
ts

 If appendAllowed is true, it is
recommended not to specify property since
the property is invalidated.
If true, delete if the file already exists.
If false, throw an exception if the file
already exists.

true

(6) shouldDeleteIfEm
pty

If true, delete file for output when output
count is 0.
 Since unintended behaviour is likely to
happen by combining with other
properties, it is recommended not to set it
to true. For details, refer Described later.

false

(7) transactional Set whether to perform transaction control.
For details, see Transaction Control.

true

(8) lineAggregator Set
org.springframework.batch.item.file.trans
form.DelimitedLineAggregator.
To enclose a field around it, set
org.terasoluna.batch.item.file.transform.
EnclosableDelimitedLineAggregator.
Usage of EnclosableDelimitedLineAggregator
will be described later.

 Nothing

(9) delimiter Sets the delimiter. comma

(10) fieldExtractor If special conversion processing for strings
and numbers is unnecessary, you can use
org.springframework.batch.item.file.trans
form.BeanWrapperFieldExtractor.
If conversion processing is necessary, set
implementation class of
org.springframework.batch.item.file.trans
form.FieldExtractor.
As an implementation example of
FieldExtractor refer to the full-width
character format as an example in Output
of Fixed-length record.

 Nothing

(11) names Give a name to each item of one record. Set
each name from the beginning of the
record with a comma separator.

 Nothing

248 | 5.3. File Access

It is recommended not to set true for shouldDeleteIfEmpty property of
FlatFileItemWriter.

For FlatFileItemWriter, unintended files are deleted when the properties are
configured by the combinations as shown below.

• p:shouldDeleteIfEmpty="true"

• p:shouldDeleteIfExists="false"

Reasons are as given below.
When shouldDeleteIfEmpty is set to true, file for output is deleted when output
count is 0.
The "output count is 0" also includes a case wherein file for output already exists
with shouldDeleteIfExists set to false.

Hence, when properties are specified by combinations above, file for output is
deleted if it exists already.
This becomes the unintended behaviour when preferably an exception should be
thrown and the process should be terminated in case a file for output exists.

It is recommended not to set shouldDeleteIfEmpty property to true since it results
in unintended operation.

Further, when subsequent processing like deletion of file is to be done if output
count is 0, implementation should be done by using OS command or Listener
instead of shouldDeleteIfEmpty property.

How to use EnclosableDelimitedLineAggregator

To enclose a field around it, use
org.terasoluna.batch.item.file.transform.EnclosableDelimitedLineAggregator provided by
TERASOLUNA Batch 5.x.
The specification of EnclosableDelimitedLineAggregator is as follows.

• Optional specification of enclosure character and delimiter character

◦ Default is the following value commonly used in CSV format

▪ Enclosed character: "(double quote)

▪ Separator: , (comma)

• If the field contains a carriage return, line feed, enclosure character, or delimiter, enclose the
field with an enclosing character

◦ When enclosing characters are included, the enclosing character will be escaped by adding
an enclosing character right before this enclosing characters.

◦ All fields can be surrounded by characters by setting

The usage of EnclosableDelimitedLineAggregator is shown below.

5.3. File Access | 249

Output file example

"001","CustomerName""001""","CustomerAddress,001","11111111111","001"
"002","CustomerName""002""","CustomerAddress,002","11111111111","002"
"003","CustomerName""003""","CustomerAddress,003","11111111111","003"

Class to be converted

// Same as above example

Bean definition example(only settings for lineAggregator)

<property name="lineAggregator"> <!-- (1) -->
 <!-- (2) (3) (4) -->
 <bean
class="org.terasoluna.batch.item.file.transform.EnclosableDelimitedLineAggregator"
 p:delimiter=","
 p:enclosure='"'
 p:allEnclosing="true">
 <property name="fieldExtractor">
 <!-- omitted settings -->
 </property>
 </bean>
</property>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) lineAggregator Set
org.terasoluna.batch.item.file.transform.
EnclosableDelimitedLineAggregator.

 Nothing

(2) delimiter Sets the delimiter. comma

(3) enclosure Set the enclosing character.
If the enclosing character is included in the
field, it is replaced with a concatenated
character as an escape process.

double quote

(4) allEnclosing If true, all fields are enclosed in an
enclosing character.
If false, only fields containing carriage
return (CR), line-leading (LF), delimiter, and
enclosing characters will be enclosed.

false

250 | 5.3. File Access

TERASOLUNA Batch 5.x provides the extension class
org.terasoluna.batch.item.file.transform.EnclosableDelimitedLineAggregator to
satisfy the specification of RFC-4180.

The org.springframework.batch.item.file.transform.DelimitedLineAggregator
provided by Spring Batch does not correspond to the enclosing process of the field,
therefore it can not satisfy the specification of RFC-4180. Refer to Spring
Batch/BATCH-2463 .

The format of the CSV format is defined as follows in RFC-4180 which is a general
format of CSV format.

• If the field does not contain line breaks, enclosing characters, or delimiters,
each field can be enclosed in double quotes (enclosing characters) or not
enclosed

• Fields that contain line feed (CRLF), double quote (enclosing character), comma
(delimiter) should be enclosed in double quotes

• If the field is enclosed in double quotes (enclosing characters), the double
quotes contained in the value of the field must be escaped with a single double
quote immediately before it

How to output TSV format file

When a TSV file is to be output, it can be realized by setting a tab as a delimiter.

Setting example of delimiter when outputting TSV file (setting by constant)

<property name="delimiter">
 <util:constant
 static-
field="org.springframework.batch.item.file.transform.DelimitedLineToken
izer.DELIMITER_TAB"/>
</property>

Or, it may be as follows.

Example of delimiter setting when TSV file is output (setting by character reference)

<property name="delimiter" value="	"/>

5.3.2.2. Fixed-length record

Describe how to define fixed length record files.

5.3.2.2.1. Input

An example of setting for reading the following input file is shown.

5.3. File Access | 251

https://jira.spring.io/browse/BATCH-2463
https://jira.spring.io/browse/BATCH-2463

TERASOLUNA Batch 5.x corresponds to a format in which record delimitation is determined by line
feed and a format is determined by the number of bytes.

Input file example 1 (record breaks are line feeds)

Sale012016 1 00000011000000000
Sale022017 2 00000022000000000
Sale032018 3 00000033000000000

Input file example 2 (record delimiter is byte number, 32 bytes is 1 record)

Sale012016 1 00000011000000000Sale022017 2 00000022000000000Sale032018 3
00000033000000000

Input file specification

No Field Name Data Type Number of bytes

(1) branchId String 6

(2) year int 4

(3) month int 2

(4) customerId String 10

(5) amount BigDecimal 10

Class to be converted

public class SalesPlanDetail {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

The setting for reading the above file is as follows.

252 | 5.3. File Access

Bean definition example

<!-- (1) (2) (3) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="MS932"
 p:strict="true">
 <property name="bufferedReaderFactory"> <!-- (4) -->
 <bean class=
"org.springframework.batch.item.file.DefaultBufferedReaderFactory"/>
 </property>
 <property name="lineMapper"> <!-- (5) -->
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer"> <!-- (6) -->
 <!-- (7) -->
 <!-- (8) -->
 <!-- (9) -->
 <bean
class="org.terasoluna.batch.item.file.transform.FixedByteLengthLineTokenizer"
 p:names="branchId,year,month,customerId,amount"
 c:ranges="1-6, 7-10, 11-12, 13-22, 23-32"
 c:charset="MS932" />
 </property>
 <property name="fieldSetMapper"> <!-- (10) -->
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail"/>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the input file. Nothing

(2) encoding Sets the character code of the input file.
 Default value of character code for the
components offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemWriter is "UTF-8").
Hence, it is recommended to explicitly set
character code even while using default
value.

JavaVM default
character set

(3) strict If true is set, an exception occurs if the
input file does not exist(can not be opened).

true

5.3. File Access | 253

No Property Name Setting contents Require
d

Default Value

(4) bufferedReaderFa
ctory

To decide record breaks by line breaks, use
the default value
org.springframework.batch.item.file.Defau
ltBufferedReaderFactory. BufferedReader
generated by DefaultBufferedReaderFactory
fetches the data upto the newline as one
record.

To judge the delimiter of a record by the
number of bytes, set
org.terasoluna.batch.item.file.FixedByteL
engthBufferedReaderFactory provided by
TERASOLUNA Batch 5.x. BufferedReader
generated by
FixedByteLengthBufferedReaderFactory
fetches the data upto the specified number
of bytes as one record.
Detailed specifications and usage of
FixedByteLengthBufferedReaderFactory will
be described later.

DefaultBufferedRea
derFactory

(5) lineMapper Set
org.springframework.batch.item.file.mappi
ng.DefaultLineMapper.

 Nothing

(6) lineTokenizer Set
org.terasoluna.batch.item.file.transform.
FixedByteLengthLineTokenizer provided by
TERASOLUNA Batch 5.x.

 Nothing

(7) names Give a name to each item of one record.
Each item can be retrieved using the name
set in FieldSet used in FieldSetMapper.
Set each name from the beginning of the
record with a comma separator.
When using BeanWrapperFieldSetMapper it
is mandatory setting.

Nothing

(8) ranges
(Constructor
argument)

Sets the delimiter position. Set the delimiter
position from the beginning of the record,
separated by commas.
The unit of each delimiter position is byte,
and it is specified in start position - end
position format.
The range specified from the record is
acquired in the order in which the
delimiter positions are set, and stored in
FieldSet.
When names of (6) are specified, the
delimiter positions are stored in FieldSet
in correspondence with names in the order
in which they are set.

 Nothing

254 | 5.3. File Access

No Property Name Setting contents Require
d

Default Value

(9) charset
(Constructor
argument)

Set the same character code as (2). Nothing

(10) fieldSetMapper If special conversion processing for
character strings and numbers is
unnecessary, use
org.springframework.batch.item.file.mappi
ng.BeanWrapperFieldSetMapper, and specify
the conversion target class as property
targetType. By doing this, we create an
instance that automatically sets the value in
the field that matches the name of each
item set in (6).
If conversion processing is necessary, set
the implementation class of
org.springframework.batch.item.file.mappi
ng.FieldSetMapper.

 Nothing

 See How To Extend for the case of implementing FieldSetMapper yourself.

How to use FixedByteLengthBufferedReaderFactory

To read a file that determines record delimiter by byte count, use
org.terasoluna.batch.item.file.FixedByteLengthBufferedReaderFactory provided by TERASOLUNA
Batch 5.x.

By using FixedByteLengthBufferedReaderFactory, it is possible to acquire up to the number of bytes
specified as one record.
The specification of FixedByteLengthBufferedReaderFactory is as follows.

• Specify byte count of record as constructor argument

• Generate FixedByteLengthBufferedReader which reads the file with the specified number of bytes
as one record

Use of FixedByteLengthBufferedReader is as follows.

• Reads a file with one byte length specified at instance creation

• If there is a line feed code, do not discard it and read it by including it in the byte length of one
record

• The file encoding to be used for reading is the value set for FlatFileItemWriter, and it will be
used when BufferedReader is generated.

The method of defining FixedByteLengthBufferedReaderFactory is shown below.

5.3. File Access | 255

<property name="bufferedReaderFactory">
 <bean class="org.terasoluna.batch.item.file.FixedByteLengthBufferedReaderFactory"
 c:byteLength="32"/> <!-- (1) -->

</property>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) byteLength
(Constructor
argument)

Set the number of bytes per record. Nothing

Components to use when handling Fixed-length files

When dealing with Fixed-length files, it is based on using the component provided
by TERASOLUNA Batch 5.x.

FixedByteLengthBufferedReaderFactory

BufferedReader generation class that reads one record from the fixed-length file
without line break by the number of bytes of the specified character code

FixedByteLengthLineTokenizer

The FixedLengthTokenizer extension class, separated by the number of bytes
corresponding to the multibyte character string

Processing records containing multibyte character strings

When processing records containing multibyte character strings, be sure to use
FixedByteLengthLineTokenizer.
The FixedLengthTokenizer provided by Spring Batch separates the record by the
number of characters instead of the number of bytes, so there is a possibility that
the item will not be extracted as expected.

Since this issue is already reported to JIRA Spring Batch/BATCH-2540, it might be
unnecessary in the future.

 For the implementation of FieldSetMapper, refer to How To Extend.

5.3.2.2.2. Output

An example of setting for writing the following output file is shown.

In order to write a fixed-length file, it is necessary to format the value obtained from the bean
according to the number of bytes of the field.
The format execution method differs as follows depending on whether double-byte characters are
included or not.

256 | 5.3. File Access

https://jira.spring.io/browse/BATCH-2540

• If double-byte characters are not included(only single-byte characters and the number of bytes
of characters is constant)

◦ Format using FormatterLineAggregator.

◦ The format is set by the format used in the String.format method.

• If double-byte characters are included(Depending on the character code, the number of bytes of
characters is not constant)

◦ Format with implementation class of FieldExtractor.

First, a setting example in the case where double-byte characters are not included in the output file
is shown, followed by a setting example in the case where double-byte characters are included.

The setting when double-byte characters are not included in the output file is shown below.

Output file example

 0012016 10000000001 10000000
 0022017 20000000002 20000000
 0032018 30000000003 30000000

Output file specification

No Field Name Data Type Number of bytes

(1) branchId String 6

(2) year int 4

(3) month int 2

(4) customerId String 10

(5) amount BigDecimal 10

If the field’s value is less than the number of bytes specified, the rest of the field will be filled with
halfwidth space.

Class to be converted

public class SalesPlanDetail {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

The settings for writing the above file are as follows.

5.3. File Access | 257

Bean definition

<!-- Writer -->
<!-- (1) (2) (3) (4) (5) (6) (7) -->
<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="MS932"
 p:lineSeparator="
"
 p:appendAllowed="true"
 p:shouldDeleteIfExists="false"
 p:shouldDeleteIfEmpty="false"
 p:transactional="true">
 <property name="lineAggregator"> <!-- (8) -->
 <bean
class="org.springframework.batch.item.file.transform.FormatterLineAggregator"
 p:format="%6s%4s%2s%10s%10s"/> <!-- (9) -->
 <property name="fieldExtractor"> <!-- (10) -->
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="branchId,year,month,customerId,amount"/> <!-- (11) -->
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the output file. Nothing

(2) encoding Sets the character code of the output file.
 Default value of character code for the
components offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemReader is "Default character
set of JavaVM").
Hence, it is recommended to explicitly set
the character code even while using default
value.

UTF-8

(3) lineSeparator Set the record break(line feed code).
To make it without line breaks, set (empty
string).

line.separator of
system’s property

(4) appendAllowed If true, add to the existing file.
 If true, it must be noted that setting
value of shouldDeleteIfExists is invalidated.

false

258 | 5.3. File Access

No Property Name Setting contents Require
d

Default Value

(5) shouldDeleteIfExis
ts

 If appendAllowed is true, it is
recommended not to specify a property
since this property is invalidated.
If true, delete the file if it already exists.
If false, throw an exception if the file
already exists.

true

(6) shouldDeleteIfEm
pty

If true, delete the file for output if the
output count is 0.
 Since unintended behaviour is likely to
happen by combining with other
properties, it is recommended not to set it
to true. For details, refer Notes for how to
output variable length record.

false

(7) transactional Set whether to perform transaction control.
For details, see Transaction Control.

true

(8) lineAggregator Set
org.springframework.batch.item.file.trans
form.FormatterLineAggregator.

 Nothing

(9) format Set the output format with the format used
in the String.format method.

 Nothing

(10) fieldExtractor If special conversion processing for strings
and numbers is unnecessary, you can use
org.springframework.batch.item.file.trans
form.BeanWrapperFieldExtractor.

If conversion processing is necessary, set
implementation class of
org.springframework.batch.item.file.trans
form.FieldExtractor.
An example for implementatiion of
FieldExtractor to format double-byte
characters is written later on.

PassThroughFieldEx
tractor

(11) names Give a name to each item of one record. Set
the names of each field from the beginning
of the record with a comma.

 Nothing

About PassThroughFieldExtractor

Deafult value for property fieldExtractor of FormatterLineAggregator is
org.springframework.batch.item.file.transform.PassThroughFieldExtractor.

PassThroughFieldExtractor is a class to return the original item without processing
anything, and is used when FieldExtractor will not process anything.

If the item is an array or a collection, it is returned as it is, otherwise it is wrapped
in an array of single elements.

5.3. File Access | 259

Example of how to format a field with double-byte character

When formatting for double-byte characters, since the number of bytes per character differs
depending on the character code, use the implementation class of FieldExtractor instead of
FormatterLineAggregator.

Implementation class of FieldExtractor is to be done as follows.

• Implement FieldExtractor and override extract method.

• extract method is to be implemented as below

◦ get the value from the item(target bean), and perform the conversion as needed

◦ set the value to an array of object and return it.

The format of a field that includes double-byte characters is to be done in the implementation class
of FieldExtractor by the following way.

• Get the number of bytes for the character code

• Format the value by trimming or padding it according to be number of bytes

Below is a setting example for formatting a field including double-byte characters.

Output file example

 0012016 10000000001 10000000
 番号2017 2 売上高002 20000000
 番号32018 3 売上003 30000000

Use of the output file is same as the example above.

Bean definition(settings of lineAggregator only)

<property name="lineAggregator"> <!-- (1) -->
 <bean
class="org.springframework.batch.item.file.transform.FormatterLineAggregator"
 p:format="%s%4s%2s%s%10s"/> <!-- (2) -->
 <property name="fieldExtractor"> <!-- (3) -->
 <bean
class="org.terasoluna.batch.functionaltest.ch05.fileaccess.plan.SalesPlanFixedLengthFi
eldExtractor"/>
 </property>
 </bean>
</property>

Item list of setting contents

260 | 5.3. File Access

No Property Name Setting contents Require
d

Default Value

(1) lineAggregator Set
org.springframework.batch.item.file.trans
form.FormatterLineAggregator.

 Nothing

(2) format Set the output format with the format used
in the String.format method.
The number of digits is specified only for
fields that do not contain double-byte
characters.

 Nothing

(3) fieldExtractor Set implementation class of FieldExtractor.
An implementation example will be
described later.

PassThroughFieldEx
tractor

Class to be converted

public class SalesPlanDetail {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

5.3. File Access | 261

Sample implementation of FieldExtractor to format double-byte characters

public class SalesPlanFixedLengthFieldExtractor implements FieldExtractor
<SalesPlanDetail> {
 // (1)
 @Override
 public Object[] extract(SalesPlanDetail item) {
 Object[] values = new Object[5]; // (2)

 // (3)
 values[0] = fillUpSpace(item.getBranchId(), 6); // (4)
 values[1] = item.getYear();
 values[2] = item.getMonth();
 values[3] = fillUpSpace(item.getCustomerId(), 10); // (4)
 values[4] = item.getAmount();

 return values; // (8)
 }

 // It is a simple impl for example
 private String fillUpSpace(String val, int num) {
 String charsetName = "MS932";
 int len;
 try {
 len = val.getBytes(charsetName).length; // (5)
 } catch (UnsupportedEncodingException e) {
 // omitted exception handling
 }

 // (6)
 if (len > num) {
 throw new IncorrectFieldLengthException("The length of field is invalid. "
+ "[value:" + val + "][length:"
 + len + "][expect length:" + num + "]");
 }

 if (num == len) {
 return val;
 }

 StringBuilder filledVal = new StringBuilder();
 for (int i = 0; i < (num - len); i++) { // (7)
 filledVal.append(" ");
 }
 filledVal.append(val);

 return filledVal.toString();
 }
}

262 | 5.3. File Access

Item list of setting contents

No Description

(1) Implement FieldExtractor class and override extract method.
Set the conversion target class as the type argument of FieldExtractor.

(2) Define a Object type array to store data after the conversion.

(3) Get the value from the item(target bean), and perform the conversion as needed, set the
value to an array of object.

(4) Format the field that includes double-byte character.
Refer to (5) and (6) for the details of format process.

(5) Get the number of bytes for the character code.

(6) Throw an exception when the fetched number of bytes exceeds the maximum size.

(7) Format the value by trimming or padding it according to be number of bytes.
In the implementation example, white space characters are added before the character
string up to the specified number of bytes.

(8) Returns an array of Object type holding the processing result.

5.3.2.3. Single String record

Describe the definition method when dealing with a single character string record file.

5.3.2.3.1. Input

An example of setting for reading the following input file is shown below.

Input file sample

Summary1:4,000,000,000
Summary2:5,000,000,000
Summary3:6,000,000,000

The setting for reading the above file is as follows.

Bean definition

<!-- (1) (2) (3) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="MS932"
 p:strict="true">
 <property name="lineMapper"> <!-- (4) -->
 <bean
class="org.springframework.batch.item.file.mapping.PassThroughLineMapper"/>
 </property>
</bean>

5.3. File Access | 263

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the input file. Nothing

(2) encoding Sets the character code of the input file.
 Default value of character code for the
components offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemWriter is "UTF-8").
Hence, it is recommended to explicitly set
character code even while using default
value.

JavaVM default
character set

(3) strict If true is set, an exception occurs if the
input file does not exist(can not be opened).

true

(4) lineMapper Set
org.springframework.batch.item.file.mappi
ng.PassThroughLineMapper.
PassThroughLineMapper is a implementation
class of LineMapper, and it will return the
String value of passed record as it is.

 Nothing

5.3.2.3.2. Output

The setting for writing the above file is as follows.

Output file example

Summary1:4,000,000,000
Summary2:5,000,000,000
Summary3:6,000,000,000

264 | 5.3. File Access

Bean definition

<!-- Writer -->
<!-- (1) (2) (3) (4) (5) (6) (7) -->
<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="MS932"
 p:lineSeparator="
"
 p:appendAllowed="true"
 p:shouldDeleteIfExists="false"
 p:shouldDeleteIfEmpty="false"
 p:transactional="true">
 <property name="lineAggregator"> <!-- (8) -->
 <bean
class="org.springframework.batch.item.file.transform.PassThroughLineAggregator"/>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the output file. Nothing

(2) encoding Sets the character code of the output file.
 Default value of character code for the
components offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemReader is "Default character
set of JavaVM").
Hence, it is recommended to explicitly set
character code even while using default
value.

UTF-8

(3) lineSeparator Set the record break(line feed code) line.separator of
system’s property

(4) appendAllowed If true, add to existing file.
 If true, it must be noted that setting
value of shouldDeleteIfExists is invalidated.

false

(5) shouldDeleteIfExis
ts

 If appendAllowed is true, it is
recommended not to specify the property
since the property is invalidated.
If true, delete the file if it already exists.
If false, throw an exception if the file
already exists.

true

5.3. File Access | 265

No Property Name Setting contents Require
d

Default Value

(6) shouldDeleteIfEm
pty

If true, delete file for output if output count
is 0.
 Since unintended behaviour is likely to
happen by combining with other
properties, it is recommended not to set it
to true. For details, refer Notes for how to
output variable length records.

false

(7) transactional Set whether to perform transaction control.
For details, see Transaction Control.

true

(8) lineAggregator Set
org.springframework.batch.item.file.trans
form.PassThroughLineAggregator.
PassThroughLineAggregator is the
implementation class of LineAggregator that
will return the converted String value of
the item(target Bean) as it is by processing
item.toString().

 Nothing

5.3.2.4. Header and Footer

Explain the input / output method when there is a header / footer.

Here how to skip the header/footer by specifying the number of lines is explained.
When the number of records of header / footer is variable and it is not possible to specify the
number of lines, use PatternMatchingCompositeLineMapper with reference to Multi format input

5.3.2.4.1. Input

Skipping Header

There are 2 ways to skip the header record.

• Set the number of lines to skip to property linesToSkip of FlatFileItemReader

• Remove header record in preprocessing by OS command

Input file sample

sales_plan_detail_11
branchId,year,month,customerId,amount
000001,2016,1,0000000001,1000000000
000002,2017,2,0000000002,2000000000
000003,2018,3,0000000003,3000000000

The first 2 lines is the header record.

266 | 5.3. File Access

The setting for reading the above file is as follows.

Skip by using linesToSkip

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:linesToSkip="2"> <!-- (1) -->
 <property name="lineMapper">
 <!-- omitted settings -->
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) linesToSkip Set the number of header lines to be
skipped.

0

Skip by using OS command

Remove number of lines in header from the top of input file
tail -n +`expr 2 + 1` input.txt > output.txt

Use the tail command and get the 3rd line and after from input.txt, and then write it out to
output.txt. Please note that the value specified for option -n + K of tail command is the number of
header records + 1.

OS command to skip header record and footer record

By using the head and tail commands, it is possible to skip the header record and
footer record by specifying the number of lines.

How to skip the header record

Execute the tail command with option -n +K, and get the lines after K from the
target file.

How to skip the footer record

Execute the head command with option -n -K, and get the lines befor K from the
target file.

A sample of shell script to skip header record and footer record can be written as
follows.

5.3. File Access | 267

An example of a shell script that removes a specified number of lines from a header /
footer

#!/bin/bash

if [$# -ne 4]; then
 echo "The number of arguments must be 4, given is $#." 1>&2
 exit 1
fi

Input file.
input=$1

Output file.
output=$2

Number of lines in header.
header=$3

Number of lines in footer.
footer=$4

Remove number of lines in header from the top of input file
and number of lines in footer from the end,
and save to output file.
tail -n +`expr ${header} + 1` ${input} | head -n -${footer} > ${output}

Arguments

No Description

(1) Input file

(2) Output file

(3) Number of lines to skip for header

(4) Number of lines to skip for footer

Retrieving header information

Here shows how to recognize and retrive the header record.

The extraction of header information is implemented as follows.

Settings

• Write the process for header record in implementation class of
org.springframework.batch.item.file.LineCallbackHandler

◦ Set the information retrieved in LineCallbackHandler#handleLine() to
stepExecutionContext

• Set implementation class of LineCallbackHandler in skippedLinesCallback of
FlatFileItemReader

268 | 5.3. File Access

• Set the number of lines to skip to property linesToSkip of FlatFileItemReader

Reading files and retrieving header information

• For each line which is skipped by the setting of linesToSkip, LineCallbackHandler#handleLine
() is executed

◦ Header information is set to stepExecutionContext

Use retrieved header information

• Get header information from stepExecutionContext and use it in the processing of the data
part

An example of implementation for retrieving header record information is shown below.

Bean definition

<bean id="lineCallbackHandler"

class="org.terasoluna.batch.functionaltest.ch05.fileaccess.module.HoldHeaderLineCallba
ckHandler"/>

<!-- (1) (2) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:linesToSkip="2"
 p:skippedLinesCallback-ref="lineCallbackHandler"
 p:resource="file:#{jobParameters['inputFile']}">
 <property name="lineMapper">
 <!-- omitted settings -->
 </property>
</bean>

<batch:job id="jobReadCsvSkipAndReferHeader" job-repository="jobRepository">
 <batch:step id="jobReadCsvSkipAndReferHeader.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="loggingHeaderRecordItemProcessor"
 writer="writer" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="lineCallbackHandler"/> <!-- (3) -->
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
</batch:job>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) linesToSkip Set the number of lines to skip. 0

5.3. File Access | 269

No Property Name Setting contents Require
d

Default Value

(2) skippedLinesCallb
ack

Set implementation class of
LineCallbackHandler.
An implementation sample will be
described later.

Nothing

(3) listener Set implementation class of
StepExecutionListener.
Since LineCallbackHandler specified in
skippedLinesCallback of FlatFileItemReader
is not automatically registered as a
Listener, setting is necessary.
The detailed reason will be described later.

Nothing

About the listener

Since the following two cases are not automatically registered as Listener, it is
necessary to add a definition to Listeners at the time of job definition.
(If listener definitions are not added, StepExecutionListener # beforeStep () will
not be executed)

• StepExecutionListener of LineCallbackHandler which is set to
skippedLinesCallback of FlatFileItemReader

• StepExecutionListener implemented to implementation class of Tasklet

 <batch:job id="jobReadCsvSkipAndReferHeader" job-
repository="jobRepository">
 <batch:step id="jobReadCsvSkipAndReferHeader.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"

processor="loggingHeaderRecordItemProcessor"
 writer="writer" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="loggingItemReaderListener"/>
 <!-- mandatory -->
 <batch:listener ref="lineCallbackHandler"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 </batch:job>

LineCallbackHandler should be implemented as follows.

• Implement StepExecutionListener#beforeStep()

◦ Implement StepExecutionListener#beforeStep() by either ways shown below

▪ Implement StepExecutionListener class and override beforeStep method

270 | 5.3. File Access

▪ Implement beforeStep method and annotate with @BeforeStep

◦ Get StepExecution in the beforeStep method and save it in the class field

• Implement LineCallbackHandler#handleLine()

◦ Implement LineCallbackHandler class and override handleLine

▪ Note that the handleLine method is called once for each line to be skipped.

◦ Get stepExecutionContext from StepExecution and set header information to
stepExecutionContext

Sample implementation of LineCallbackHandler

@Component
public class HoldHeaderLineCallbackHandler implements LineCallbackHandler { // (1)
 private StepExecution stepExecution; // (2)

 @BeforeStep // (3)
 public void beforeStep(StepExecution stepExecution) {
 this.stepExecution = stepExecution; // (4)
 }

 @Override // (5)
 public void handleLine(String line) {
 this.stepExecution.getExecutionContext().putString("header", line); // (6)
 }
}

Item list of setting contents

No Description

(1) Implement LineCallbackHandler class and override handleLine.

(2) Define a field to save StepExecution.

(3) Implement beforeStep method and annotate it with @BeforeStep.
The signature will be void beforeStep(StepExecution stepExecution).
It is also possible to implement the StepExecutionListener class and override beforeStep
method.

(4) Get the StepExecution and save it to the class field.

(5) Implement LineCallbackHandler class and override handleLine method.

(6) Get stepExecutionContext from StepExecution, set header information to
stepExecutionContext by using key header.
Here, for simplicity, only the last one line of two lines to be skipped is stored.

Here is a sample of getting the header information from stepExecutionContext and using it for
processing of data part.
A sample of using header information in ItemProcessor will be described as an example.
The same can be done when using header information in other components.

5.3. File Access | 271

The implementation of using header information is done as follows.

• As like the sample of implementing LineCallbackHandler, implement
StepExecutionListener#beforeStep()

• Get StepExecution in beforeStep method and save it to the class field

• Get stepExecutionContext and the header information from StepExecution and use it

Sample of how to use header information

@Component
public class LoggingHeaderRecordItemProcessor implements
 ItemProcessor<SalesPlanDetail, SalesPlanDetail> {
 private StepExecution stepExecution; // (1)

 @BeforeStep // (2)
 public void beforeStep(StepExecution stepExecution) {
 this.stepExecution = stepExecution; // (3)
 }

 @Override
 public SalesPlanDetail process(SalesPlanDetail item) throws Exception {
 String headerData = this.stepExecution.getExecutionContext()
 .getString("header"); // (4)
 // omitted business logic
 return item;
 }
}

Item list of setting contents

No Description

(1) Define a field to save StepExecution.

(2) Implement beforeStep method and annotate it with @BeforeStep.
The signature will be void beforeStep(StepExecution stepExecution).
It is also possible to implement the StepExecutionListener class and override beforeStep
method.

(3) Get the StepExecution and save it to the class field.

(4) Get stepExecutionContext from StepExecution, set header information to
stepExecutionContext by using key header.

272 | 5.3. File Access

About the use of ExecutionContext of Job/Step

In retrieving header (footer) information, the method is to store the read header
information in ExecutionContext of StepExecution, and retrieves it from
ExecutionContext when using it.

In the example below, header information is stored in ExecutionContext of
StepExecution in order to obtain and use header information within one step. If
step is divided by retreiving and using the header information, use
ExecutionContext of JobExecution.

For details about ExecutionContext of Job/Step, refer to Architecture of Spring Batch

Skipping Footer

Since Spring Batch nor TERASOLUNA Batch 5.x does not support skipping footer record, it needs to
be done by OS command.

Input File Sample

000001,2016,1,0000000001,1000000000
000002,2017,2,0000000002,2000000000
000003,2018,3,0000000003,3000000000
number of items,3
total of amounts,6000000000

The last two lines are footer records.

The setting for reading the above file is as follows.

Skipping by OS command

Remove number of lines in footer from the end of input file
head -n -2 input.txt > output.txt

Use head command, get the lines above the second line from the last from input.txt, and write it out
to output.txt.

It is reported to JIRA Spring Batch/BATCH-2539 that Spring Batch does not have a
function to skip the footer record.
Hence, there is a possibility that not only by OS command, but Spring Batch will be
able to skip the footer record in the future.

Retrieving footer information

In Spring Batch and TERASOLUNA Batch 5.x, functions for skipping footer record retreiving footer
information is not provided.

Therefore, it needs to be divided into preprocessing OS command and 2 steps as described below.

5.3. File Access | 273

https://jira.spring.io/browse/BATCH-2539

• Divide footer record by OS command

• In 1st step, read the footer record and set footer information to ExecutionContext

• In 2nd step, retrive footer information from ExecutionContext and use it

Retreiving footer information will be implemented as follows.

Divide footer record by OS command

• Use OS command to divide the input file to footer part and others

1st step, read the footer record and get footer information

• Read the footer record and set it to jobExecutionContext

◦ Since the steps are different in storing and using footer information, store it in
jobExecutionContext.

◦ The use of jobExecutionContext is same as the stepExecutionContext explained in
Retrieving header information, except for the scope of Job and Step.

2nd step, use the retrieved footer information

• Get the footer information from jobExecutionContext and use it for processing of data part.

An example will be described in which footer information of the following file is taken out and
used.

Input File Sample

000001,2016,1,0000000001,1000000000
000002,2017,2,0000000002,2000000000
000003,2018,3,0000000003,3000000000
number of items,3
total of amounts,6000000000

The last 2 lines are footer records.

Divide footer record by OS command

The setting to divide the above file into footer part and others by OS command is as follows.

Skipping by OS command

Extract non-footer record from input file and save to output file.
head -n -2 input.txt > input_data.txt

Extract footer record from input file and save to output file.
tail -n 2 input.txt > input_footer.txt

Use head command, write footer part of input.txt to input_footer.txt, and others to input_data.txt.

Output file sample is as follows.

274 | 5.3. File Access

Output file example(input_data.txt)

000001,2016,1,0000000001,1000000000
000002,2017,2,0000000002,2000000000
000003,2018,3,0000000003,3000000000

Output file example(input_footer.txt)

number of items,3
total of amounts,6000000000

Get/Use footer information

Explain how to get and use footer information from a footer record divided by OS command.

The step of reading the footer record is divided into the preprocessing and main processing.
Refer to Flow Controll for details of step dividing.

In the example below, a sample is shown in which footer information is retreived and stored in
jobExecutionContext.
Footer information can be used by retreiving it from jobExecutionContext like the same way
described in Retrieving header information.

Class to set information of data record

public class SalesPlanDetail {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

Class to set information of footer record

public class SalesPlanDetailFooter implements Serializable {

 // omitted serialVersionUID

 private String name;
 private String value;

 // omitted getter/setter
}

Define the Bean like below.

5.3. File Access | 275

• Define ItemReader to read footer record

• Define ItemReader to read data record

• Define business logic to retreive footer record

◦ In the sample below, it is done by implementing Tasklet

• Define a job

◦ Define a step with a preprocess to get footer information and a main process to read data
records.

276 | 5.3. File Access

Bean definition

<!-- ItemReader for reading footer records -->
<!-- (1) -->
<bean id="footerReader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['footerInputFile']}">
 <property name="lineMapper">
 <!-- omitted other settings -->
 </property>
</bean>

<!-- ItemReader for reading data records -->
<!-- (2) -->
<bean id="dataReader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['dataInputFile']}">
 <property name="lineMapper">
 <!-- omitted other settings -->
 </property>
</bean>

<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step">
 <!-- omitted settings -->
</bean>

<!-- Tasklet for reading footer records -->
<bean id="readFooterTasklet"

class="org.terasoluna.batch.functionaltest.ch05.fileaccess.module.ReadFooterTasklet"/>

<batch:job id="jobReadAndWriteCsvWithFooter" job-repository="jobRepository">
 <!-- (3) -->
 <batch:step id="jobReadAndWriteCsvWithFooter.step01"
 next="jobReadAndWriteCsvWithFooter.step02">
 <batch:tasklet ref="readFooterTasklet"
 transaction-manager="jobTransactionManager"/>
 </batch:step>
 <!-- (4) -->
 <batch:step id="jobReadAndWriteCsvWithFooter.step02">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="dataReader"
 writer="writer" commit-interval="10"/>
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="readFooterTasklet"/> <!-- (5) -->
 </batch:listeners>
</batch:job>

5.3. File Access | 277

Item list of setting contents

No Item Setting contents Require
d

Default Value

(1) footerReader Define ItemReader to read a file with footer
record.
Used by injecting it to readFooterTasklet
which is executed when retreiving footer
information.

(2) dataReader Define ItemReader to read a file with data
record.

(3) preprocess step Define a step to get the footer information.
Implemented at readFooterTasklet.
Implementation sample is written later on.

(4) main process step A step of retreiving data information and
using footer information is defined.
Use dataReader for reader.
In the sample, method to get footer
information from jobExecutionContext such
as ItemProcessor is not implemented.
Footer information can be retreived and
used the same way described in Retrieving
header information.

(5) listeners Set readFooterTasklet.
Without this setting,
JobExecutionListener#beforeJob()
implemented in readFooterTasklet will not
be executed.
For details, refer to Retrieving header
information.

Nothing

An example for reading a file with footer record and storing it to jobExecutionContextis shown
below.

The way to make it as the implementation class of Tasklet is as follows.

• Inject a bean-defined footerReader by name specification using @Inject annotation and @Named
annotation

• Set the footer information to jobExecutionContext

◦ The realization method is the same as
[Ch05_FileAccess_HeaderFooter_Input_AccessHeaders]

278 | 5.3. File Access

Getting footer information

public class ReadFooterTasklet implements Tasklet {
 // (1)
 @Inject
 @Named("footerReader")
 ItemStreamReader<SalesPlanDetailFooter> itemReader;

 private JobExecution jobExecution;

 @BeforeJob
 public void beforeJob(JobExecution jobExecution) {
 this.jobExecution = jobExecution;
 }

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 ArrayList<SalesPlanDetailFooter> footers = new ArrayList<>();

 // (2)
 itemReader.open(chunkContext.getStepContext().getStepExecution()
 .getExecutionContext());

 SalesPlanDetailFooter footer;
 while ((footer = itemReader.read()) != null) {
 footers.add(footer);
 }

 // (3)
 jobExecution.getExecutionContext().put("footers", footers);

 return RepeatStatus.FINISHED;
 }
}

Item list of setting contents

No Description

(1) Inject the bean defined footerReader by name using @Inject@ and @Named.

(2) Use footerReader to read the file with footer record and get the footer information.
To use ItemReader bean defined in implementation class of Tasklet, refer to Creating a
tasklet-oriented job

(3) Get jobExecutionContext from JobExecution, set the footer information to
jobExecutionContext by key footers.

5.3.2.4.2. Output

5.3. File Access | 279

Output header information

To output header information to a flat file, implement as follows.

• Implement org.springframework.batch.item.file.FlatFileHeaderCallback

• Set the implemented FlatFileHeaderCallback to property headerCallback of FlatFileItemWriter

◦ By setting headerCallback, FlatFileHeaderCallback#writeHeader() will be executed at first
when processing FlatFileItemWriter

Implement FlatFileHeaderCallback as follows.

• Implement FlatFileHeaderCallback class and override writeHeader.

• Write the header information using Writer from the argument.

Sample implementation of FlatFileHeaderCallback is shown below.

Sample implementation of FlatFileHeaderCallback

@Component
// (1)
public class WriteHeaderFlatFileFooterCallback implements FlatFileHeaderCallback {
 @Override
 public void writeHeader(Writer writer) throws IOException {
 // (2)
 writer.write("omitted");
 }
}

Item list of setting contents

No Description

(1) Implement FlatFileHeaderCallback class and override writeHeader method.

(2) Write the header information using Writer from the argument.
Write method of FlatFileItemWriter will be executed right after the execution of
FlatFileHeaderCallback#writeHeader().
Therefore, printing line break at the end of header information is not needed. The line
feed that is printed is the one set when FlatFileItemWriter bean was defined.

280 | 5.3. File Access

Bean definition

<!-- (1) (2) -->
<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:headerCallback-ref="writeHeaderFlatFileFooterCallback"
 p:lineSeparator="
"
 p:resource="file:#{jobParameters['outputFile']}">
 <property name="lineAggregator">
 <!-- omitted settings -->
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) headerCallback Set implementation class of
FlatFileHeaderCallback.

(2) lineSeparator Set the record break(line feed code) line.separator of
system’s property

When implementing FlatFileHeaderCallback, printing line feed at the end of header
information is not necessary

Right after executing FlatFileHeaderCallback#writeHeader() in FlatFileItemWriter,
line feed is printed according to the bean definition, so the line feed at the end of
header information does not need to be printed.

Output footer information

To output footer information to a flat file, implement as follows.

• Implement org.springframework.batch.item.file.FlatFileFooterCallback

• Set the implemented FlatFileFooterCallback to property footerCallback of FlatFileItemWriter

◦ By setting footerCallback, FlatFileHeaderCallback#writeFooter() will be executed at first
when processing FlatFileItemWriter

A method to output footer information with a flat file will be described.

Implement FlatFileFooterCallback as follows.

• Output footer information using Writer from the argument.

• Implement FlatFileFooterCallback class and override writeFooter.

Below is an implementation sample of FlatFileFooterCallback class for a Job to get footer
information from ExecutionContext and write it out to a file.

5.3. File Access | 281

Class to set information of footer record

public class SalesPlanDetailFooter implements Serializable {

 // omitted serialVersionUID

 private String name;
 private String value;

 // omitted getter/setter
}

Implementation Sample of FlatFileFooterCallback

@Component
public class WriteFooterFlatFileFooterCallback implements FlatFileFooterCallback { //
(1)
 private JobExecution jobExecution;

 @BeforeJob
 public void beforeJob(JobExecution jobExecution) {
 this.jobExecution = jobExecution;
 }

 @Override
 public void writeFooter(Writer writer) throws IOException {
 @SuppressWarnings("unchecked")
 ArrayList<SalesPlanDetailFooter> footers = (ArrayList<SalesPlanDetailFooter>)
this.jobExecution.getExecutionContext().get("footers"); // (2)

 BufferedWriter bufferedWriter = new BufferedWriter(writer); // (3)
 // (4)
 for (SalesPlanDetailFooter footer : footers) {
 bufferedWriter.write(footer.getName() +" is " + footer.getValue());
 bufferedWriter.newLine();
 bufferedWriter.flush();
 }
 }
}

Item list of setting contents

No Description

(1) Implement FlatFileFooterCallback class and override writeFooter method.

(2) Get footer information form ExecutionContext of the Job using key footers.
In the sample, it uses ArrayList to get several footer informations.

(3) In the sample, in order to use BufferedWriter.newLine() for printing line feed, it is using
Writer from the argument as a parameter to generate BufferedWriter.

282 | 5.3. File Access

No Description

(4) Use the Writer of argument to print footer information.

Bean definition

<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:footerCallback-ref="writeFooterFlatFileFooterCallback"> <!-- (1) -->
 <property name="lineAggregator">
 <!-- omitted settings -->
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) footerCallback Set implementation class of
FlatFileFooterCallback.

5.3.2.5. Multiple Files

Describe how to handle multiple files.

5.3.2.5.1. Input

To read multiple files of the same record format, use
org.springframework.batch.item.file.MultiResourceItemReader.
MultiResourceItemReader can use the specified ItemReader to read multiple files specified by regular
expressions.

Implement MultiResourceItemReader as follows.

• Define bean of MultiResourceItemReader

◦ Set file to read to property resources

▪ user regular expression to read multiple files

◦ Set ItemReader to read files to property delegate

Below is a definition example of MultiResourceItemReader to read multiple files with the following
file names.

File to be read (file name)

sales_plan_detail_01.csv
sales_plan_detail_02.csv
sales_plan_detail_03.csv

5.3. File Access | 283

Bean definition

<!-- (1) (2) -->
<bean id="multiResourceReader"
 class="org.springframework.batch.item.file.MultiResourceItemReader"
 scope="step"
 p:resources="file:input/sales_plan_detail_*.csv"
 p:delegate-ref="reader"/>
</bean>

<!-- (3) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="lineMapper">
 <!-- omitted settings -->
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set multiple input files with regular
expressions.

 Nothing

(2) delegate Set ItemReader where it has the actual file
read implementation.

 Nothing

(3) ItemReader with
the actual file read
implementation

Since property resource is set automatically
from MultiResourceItemReader, it is not
necessary to set it in Bean definition.

It is unnecessary to specify resource for ItemReader used by
MultiResourceItemReader

Since resource of ItemReader delegated from MultiResourceItemReader is
automatically set from MultiResourceItemReader, it is not necessary to set it in Bean
definition.

5.3.2.5.2. Output

Explain how to define multiple files.

To output to a different file for a certain number of cases, use
org.springframework.batch.item.file.MultiResourceItemWriter.

MultiResourceItemWriter can output to multiple files for each number specified using the specified
ItemWriter.
It is necessary to make the output file name unique so as not to overlap, but ResourceSuffixCreator
is provided as a mechanism for doing it.
ResourceSuffixCreator is a class that generates a suffix that makes the file name unique.

284 | 5.3. File Access

For example, if you want to make the output target file a file name outputDir /
customer_list_01.csv (01 part is serial number), set it as follows.

• Set outputDir/customer_list_ to MultiResourceItemWriter

• Implement a code to generate suffix 01.csv(01 part is serial number) at ResourceSuffixCreator

◦ Serial numbers can use the value automatically incremented and passed from
MultiResourceItemWriter

• outputDir/customer_list_01.csv is set to the ItemWriter that is actually used

MultiResourceItemWriter is defined as follows. How to implement ResourceSuffixCreator is described
later.

• Define implementation class of ResourceSuffixCreator

• Define bean for MultiResourceItemWriter

◦ Set output file to property resources

▪ Set the file name up to the suffix given to implementation class of ResourceSuffixCreator

◦ Set implementation class of ResourceSuffixCreator that generates suffix to property
resourceSuffixCreator

◦ Specify ItemWriter to be used for reading files in property delegate

◦ Set the number of output per file to property itemCountLimitPerResource

Bean definition

<!-- (1) (2) (3) (4) -->
<bean id="multiResourceItemWriter"
 class="org.springframework.batch.item.file.MultiResourceItemWriter"
 scope="step"
 p:resource="file:#{jobParameters['outputDir']}"
 p:resourceSuffixCreator-ref="customerListResourceSuffixCreator"
 p:delegate-ref="writer"
 p:itemCountLimitPerResource="4"/>
</bean>

<!-- (5) -->
<bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="lineAggregator">
 <!-- omitted settings -->
 </property>
</bean>

<bean id="customerListResourceSuffixCreator"

class="org.terasoluna.batch.functionaltest.ch05.fileaccess.module.CustomerListResource
SuffixCreator"/> <!-- (6) -->

Item list of setting contents

5.3. File Access | 285

No Property Name Setting contents Require
d

Default Value

(1) resource Sets the state before adding the suffix of the
output target file.
A file name with suffix given automatically
by MultiResourceItemWriter is set to
ItemWriter.

 Nothing

(2) resourceSuffixCre
ator

Set implementation class of
ResourceSuffixCreator.
Default is
org.springframework.batch.item.file.Simpl
eResourceSuffixCreator whice generates
suffix "." + index.

SimpleResourceSuff
ixCreator

(3) delegate Set a ItemWriter which actually reads the
file.

 Nothing

(4) itemCountLimitPe
rResource

Set the number of output per file. Integer.MAX_VALUE

(5) ItemWriter which
actually reads the
file.

Since property resource is automatically set
from MultiResourceItemWriter, it is not
necessary to set it in Bean definition.

Setting of resource of ItemWrite used by MultiResourceItemWriter is not necessary

Since Resource of ItemWriter delegated from MultiResourceItemWriter is
automatically set from MultiResourceItemWriter, it is not necessary to set it in the
bean definition.

Implement ResourceSuffixCreator as follows.

• Implement ResourceSuffixCreator and override getSuffix method

• Use argument’s index and generate suffix to return

◦ index is an int type value with initial value 1, and will be incremented for each output file

Sample implementation of ResourceSuffixCreator

// (1)
public class CustomerListResourceSuffixCreator implements ResourceSuffixCreator {
 @Override
 public String getSuffix(int index) {
 return String.format("%02d", index) + ".csv"; // (2)
 }
}

Item list of setting contents

286 | 5.3. File Access

No Description

(1) Implement ResourceSuffixCreator class and override getSuffix method.

(2) Use argument’s index to generate suffix to return. index is an int type value with initial
value 1, and will be incremented for each output file.

5.3.2.6. Control Break

How to actually do the Control Break will be described here.

What is Control Break

Control Break process(or Key Break process) is a process method to read sorted records one by
one, and handle records with a certain item(key item) as one group.
It is an algorithm that is used mainly for aggregating data. It continues counting when key items
are of the same value, and outputs aggregate values when key items are of different values.

In order to perform the control break processing, it is necessary to pre-read the record in order to
judge the change of the group. Pre-reading records can be done by using
org.springframework.batch.item.support.SingleItemPeekableItemReader.
Also, control break can be processed only in tasklet model. This is because points like "processing N
data rows defined by one line" and "transaction boundaries every fixed number of lines", which is
the basis of chunk model does not fit with "proceed at the turn of group" of control break.

The execution timing of control break processing and comparison conditions are shown below.

• Execute control break before processing the target record

◦ Keep the previously read record, compare previous record with current record

• Execute control break after processing the target record

◦ Pre-read the next record by SingleItemPeekableItemReader and compare the current record
with the next record

A sample for outputting process result from input data using control break is shown below.

Input Data

01,2016,10,1000
01,2016,11,1500
01,2016,12,1300
02,2016,12,900
02,2016,12,1200

5.3. File Access | 287

Process Result

Header Branch Id : 01,,,
01,2016,10,1000
01,2016,11,1500
01,2016,12,1300
Summary Branch Id : 01,,,3800
Header Branch Id : 02,,,
02,2016,12,900
02,2016,12,1200
Summary Branch Id : 02,,,2100

Implementation Sample of Control Break

@Component
public class ControlBreakTasklet implements Tasklet {

 @Inject
 SingleItemPeekableItemReader<SalesPerformanceDetail> reader; // (1)

 @Inject
 ItemStreamWriter<SalesPerformanceDetail> writer;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 // omitted.

 SalesPerformanceDetail previousData = null; // (2)
 BigDecimal summary = new BigDecimal(0); //(3)

 List<SalesPerformanceDetail> items = new ArrayList<>(); // (4)

 try {
 reader.open(executionContext);
 writer.open(executionContext);

 while (reader.peek() != null) { // (5)
 SalesPerformanceDetail data = reader.read(); // (6)

 // (7)
 if (isBreakByBranchId(previousData, data)) {
 SalesPerformanceDetail beforeBreakData =
 new SalesPerformanceDetail();
 beforeBreakData.setBranchId("Header Branch Id : "
 + currentData.getBranchId());
 items.add(beforeBreakData);
 }

288 | 5.3. File Access

 // omitted.
 items.add(data); // (8)

 SalesPerformanceDetail nextData = reader.peek(); // (9)
 summary = summary.add(data.getAmount());

 // (10)
 SalesPerformanceDetail afterBreakData = null;
 if (isBreakByBranchId(nextData, data)) {
 afterBreakData = new SalesPerformanceDetail();
 afterBreakData.setBranchId("Summary Branch Id : "
 + currentData.getBranchId());
 afterBreakData.setAmount(summary);
 items.add(afterBreakData);
 summary = new BigDecimal(0);
 writer.write(items); // (11)
 items.clear();
 }
 previousData = data; // (12)
 }
 } finally {
 try {
 reader.close();
 } catch (ItemStreamException e) {
 }
 try {
 writer.close();
 } catch (ItemStreamException e) {
 }
 }
 return RepeatStatus.FINISHED;
 }
 // (13)
 private boolean isBreakByBranchId(SalesPerformanceDetail o1,
 SalesPerformanceDetail o2) {
 return (o1 == null || !o1.getBranchId().equals(o2.getBranchId()));
 }
}

Item list of setting contents

No Description

(1) Inject SingleItemPeekableItemReader.

(2) Define a variable to set the previously read record.

(3) Define a variable to set aggregated values for each group.

(4) Define a variable to set records for each group including the control break’s process
result

(5) Repeat the process until there is no input data.

5.3. File Access | 289

No Description

(6) Read the record to be processed.

(7) Execute a control break before target record processing.
In the sample, if it is at the beginning of the group, heading is set stored it the variable
defined in (4).

(8) Set the process result to the variable defined in (4).

(9) Pre-read the next record.

(10) Execute a control break after target record processing. In this case, if it is at the end of
the group, the aggregated data is set in the trailer and stored in the variable defined in
(4).

(11) Output processing results for each group.

(12) Store the processing record in the variable defined in (2).

(13) Determine whether the key item has been switched.

Bean definition

<!-- (1) -->
<bean id="reader"
 class="org.springframework.batch.item.support.SingleItemPeekableItemReader"
 p:delegate-ref="delegateReader" /> <!-- (2) -->

<!-- (3) -->
<bean id="delegateReader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}">
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="branchId,year,month,customerId,amount"/>
 </property>
 <property name="fieldSetMapper">
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerforman
ceDetail"/>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

290 | 5.3. File Access

No Description

(1) Define bean for SingleItemPeekableItemReader. It will be injected to the Tasklet.

(2) Set the bean of ItemReader that actually reads the file to delegate property.

(3) Define a bean for ItemReader that actually read the file.

5.3.3. How To Extend

Here, an explanation will be written based on the below case.

• Implmementation of FieldSetMapper

• Input/Output of XML File

• Input/Output of Multi format

5.3.3.1. Implmementation of FieldSetMapper

Explain how to implement FieldSetMapper yourself.

Implement FieldSetMapper class as follows.

• Implement FieldSetMapper class and override mapFieldSet method.

• Get the value from argument’s FieldSet, do any process needed, and then set it to the
conversion target bean as a return value

◦ The FieldSet class is a class that holds data in association with an index or name, as in the
JDBC ResultSet class

◦ The FieldSet class holds the value of each field of a record divided by LineTokenizer

◦ You can store and retrieve values by specifying an index or name

Here is sample implementation for reading a file that includes data that needs to be converted,
such as BigDecimal type with comma and Date type of Japanese calendar format.

Input File Sample

"000001","平成28年1月1日","000000001","1,000,000,000"
"000002","平成29年2月2日","000000002","2,000,000,000"
"000003","平成30年3月3日","000000003","3,000,000,000"

Input file specification

No Field Name Data Type Note

(1) branchId String

(2) Date Date Japanese calendar
format

(3) customerId String

5.3. File Access | 291

No Field Name Data Type Note

(4) amount BigDecimal include comma

Class to be converted

public class UseDateSalesPlanDetail {

 private String branchId;
 private Date date;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

292 | 5.3. File Access

Implementation Sample of FieldSetMapper

@Component
public class UseDateSalesPlanDetailFieldSetMapper implements FieldSetMapper
<UseDateSalesPlanDetail> { // (1)
 /**
 * {@inheritDoc}
 *
 * @param fieldSet {@inheritDoc}
 * @return Sales performance detail.
 * @throws BindException {@inheritDoc}
 */
 @Override
 public UseDateSalesPlanDetail mapFieldSet(FieldSet fieldSet) throws BindException
{
 UseDateSalesPlanDetail item = new UseDateSalesPlanDetail(); // (2)

 item.setBranchId(fieldSet.readString("branchId")); // (3)

 // (4)
 DateFormat japaneseFormat = new SimpleDateFormat("GGGGy年M月d日", new Locale
("ja", "JP", "JP"));
 try {
 item.setDate(japaneseFormat.parse(fieldSet.readString("date")));
 } catch (ParseException e) {
 // omitted exception handling
 }

 // (5)
 item.setCustomerId(fieldSet.readString("customerId"));

 // (6)
 DecimalFormat decimalFormat = new DecimalFormat();
 decimalFormat.setParseBigDecimal(true);
 try {
 item.setAmount((BigDecimal) decimalFormat.parse(fieldSet.readString
("amount")));
 } catch (ParseException e) {
 // omitted exception handling
 }

 return item; // (7)
 }
}

Item list of setting contents

No Description

(1) Implement FieldSetMapper class and override mapFieldSet method. Set conversion target
class for type argument of FieldSetMapper.

5.3. File Access | 293

No Description

(2) Define a variable of conversion target class to store converted data.

(3) Get branchId from argument’s FieldSet, and store it to conversion target class variable.
Conversion for branchId is not done in the sample since it is not necessary.

(4) Get date from argument’s FieldSet, and store it to conversion target class variable.
Use SimpleDateFormat to convert Japanese calendar format date to Date type value.

(5) Get customerId from argument’s FieldSet, and store it to conversion target class variable.
Conversion for customerId is not done in the sample since it is not necessary.

(6) Get amount from argument’s FieldSet, and store it to conversion target class variable.
Use DecimalFormat to convert value with comma to BigDecimal type value.

(7) Return the conversion target class holding the processing result.

Getting value from FieldSet class

The FieldSet class has methods corresponding to various data types for obtaining
stored values such as listed below.
When generating FieldSet if data is stored in association with the field name, it is
possible to get data by specifying that name or by specifying the index.

• readString()

• readInt()

• readBigDecimal()

etc

5.3.3.2. XML File

Describe the definition method when dealing with XML files.

For the conversion process between Bean and XML (O / X (Object / XML) mapping), use the library
provided by Spring Framework.
Implementation classes are provided as Marshaller and Unmarshaller using XStream, JAXB, etc. as
libraries for converting between XML files and objects.
Use one that is suitable for your situation.

Below are features and points for adopting JAXB and XStream.

JAXB

• Specify the bean to be converted in the bean definition file

• Validation using a schema file can be performed

• It is useful when the schema is defined externally and the specification of the input file is
strictly determined

XStream

• You can map XML elements and bean fields flexibly in the bean definition file

294 | 5.3. File Access

• It is useful when you need to flexibly map beans

Here is a sample using JAXB.

5.3.3.2.1. Input

For inputting XML file, use org.springframework.batch.item.xml.StaxEventItemReader provided by
Spring Batch.
StaxEventItemReader can read the XML file by mapping the XML file to the bean using the specified
Unmarshaller.

Implement StaxEventItemReader as follows.

• Add @XmlRootElement to the conversion target class of XML root element

• Set below property to StaxEventItemReader

◦ Set the file to read to property resource

◦ Set the name of the root element to property fragmentRootElementName

◦ Set org.springframework.oxm.jaxb.Jaxb2Marshaller to property unmarshaller

• Set below property to Jaxb2Marshaller

◦ Set conversion target classs in list format to property classesToBeBound

◦ When performing validation using a schema file, set following two properties

▪ Set the schema file for validation to property schema

▪ Set implementation class of ValidationEventHandler to property validationEventHandler
to handle events occured during the validation

Here is the sample setting to read the input file below.

5.3. File Access | 295

Input File Sample

<?xml version="1.0" encoding="UTF-8"?>
<records>
 <SalesPlanDetail>
 <branchId>000001</branchId>
 <year>2016</year>
 <month>1</month>
 <customerId>0000000001</customerId>
 <amount>1000000000</amount>
 </SalesPlanDetail>
 <SalesPlanDetail>
 <branchId>000002</branchId>
 <year>2017</year>
 <month>2</month>
 <customerId>0000000002</customerId>
 <amount>2000000000</amount>
 </SalesPlanDetail>
 <SalesPlanDetail>
 <branchId>000003</branchId>
 <year>2018</year>
 <month>3</month>
 <customerId>0000000003</customerId>
 <amount>3000000000</amount>
 </SalesPlanDetail>
</records>

Class to be converted

@XmlRootElement(name = "SalesPlanDetail") // (1)
public class SalesPlanDetailToJaxb {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

Item list of setting contents

No Description

(1) Add @XmlRootElement annotation to make this as the root tag of XML.
Set SalesPlanDetail for the tag name.

The setting for reading the above file is as follows.

296 | 5.3. File Access

Bean definition

<!-- (1) (2) (3) -->
<bean id="reader"
 class="org.springframework.batch.item.xml.StaxEventItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:fragmentRootElementName="SalesPlanDetail"
 p:strict="true">
 <property name="unmarshaller"> <!-- (4) -->
 <!-- (5) (6) -->
 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller"
 p:schema="file:files/test/input/ch05/fileaccess/SalesPlanDetail.xsd"
 p:validationEventHandler-ref="salesPlanDetailValidationEventHandler">
 <property name="classesToBeBound"> <!-- (7) -->
 <list>

<value>org.terasoluna.batch.functionaltest.ch05.fileaccess.model.plan.SalesPlanDetailT
oJaxb</value>
 </list>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set the input file. Nothing

(2) fragmentRootElem
entName

Set the name of the root element.
If there are several target objects, use
fragmentRootElementNames.

Nothing

(3) strict If true is set, an exception occurs if the
input file does not exist(can not be opened).

true

(4) unmarshaller Set the unmarshaller.
Set Bean of
org.springframework.oxm.jaxb.Jaxb2Marshal
ler when using JAXB.

 Nothing

(5) schema Set shema file for validation.

(6) validationEventHa
ndler

Set implementation class of
ValidationEventHandler to handle events
occured during the validation.
Sample implementation of
ValidationEventHandler is described later
on.

(7) classesToBeBound Set conversion target classes in list format. Nothing

5.3. File Access | 297

Sample implementation of ValidationEventHandler

@Component
// (1)
public class SalesPlanDetailValidationEventHandler implements ValidationEventHandler {
 /**
 * Logger.
 */
 private static final Logger logger =
 LoggerFactory.getLogger(SalesPlanDetailValidationEventHandler.class);

 @Override
 public boolean handleEvent(ValidationEvent event) {
 // (2)
 logger.error("[EVENT [SEVERITY:{}] [MESSAGE:{}] [LINKED EXCEPTION:{}]" +
 " [LOCATOR: [LINE NUMBER:{}] [COLUMN NUMBER:{}] [OFFSET:{}]" +
 " [OBJECT:{}] [NODE:{}] [URL:{}]]]",
 event.getSeverity(),
 event.getMessage(),
 event.getLinkedException(),
 event.getLocator().getLineNumber(),
 event.getLocator().getColumnNumber(),
 event.getLocator().getOffset(),
 event.getLocator().getObject(),
 event.getLocator().getNode(),
 event.getLocator().getURL());
 return false; // (3)
 }
}

Item list of setting contents

No Description

(1) Implement ValidationEventHandler class and override handleEvent method.

(2) Get event information from argument’s event(ValidationEvent), and do any process
needed.
In the sample, logging is proceeded.

(3) Return false to end the search process. Return true to continue the search process.
Return false to end this operation by generating appropriate UnmarshalException,
ValidationException or MarshalException.

298 | 5.3. File Access

Adding dependency library

Library dependency needs to be added as below when using Spring Object/Xml
Marshalling provided by Spring Framework such as
org.springframework.oxm.jaxb.Jaxb2Marshaller.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-oxm</artifactId>
</dependency>

5.3.3.2.2. Output

Use org.springframework.batch.item.xml.StaxEventItemWriter provided by Spring Batch for
outputting XML file.
StaxEventItemWriter can output an XML file by mapping the bean to XML using the specified
Marshaller.

Implement StaxEventItemWriter as follows.

• Do the below setting to conversion target class

◦ Add @XmlRootElement to the class as it is to be the root element of the XML

◦ Use @XmlType annotation to set orders for outputting fields

◦ If there is a field to be excluded from conversion to XML, add @XmlTransient to the getter
method of it’s field

• Set below properties to StaxEventItemWriter

◦ Set output target file to property resource

◦ Set org.springframework.oxm.jaxb.Jaxb2Marshaller to property marshaller

• Set below property to Jaxb2Marshaller

◦ Set conversion target classes in list format to property classesToBeBound

Here is a sample for outputting below file.

5.3. File Access | 299

Output file example

<?xml version="1.0" encoding="UTF-8"?>
<records>
 <Customer>
 <customerId>001</customerId>
 <customerName>CustomerName001</customerName>
 <customerAddress>CustomerAddress001</customerAddress>
 <customerTel>11111111111</customerTel>
 <chargeBranchId>001</chargeBranchId></Customer>
 <Customer>
 <customerId>002</customerId>
 <customerName>CustomerName002</customerName>
 <customerAddress>CustomerAddress002</customerAddress>
 <customerTel>11111111111</customerTel>
 <chargeBranchId>002</chargeBranchId></Customer>
 <Customer>
 <customerId>003</customerId>
 <customerName>CustomerName003</customerName>
 <customerAddress>CustomerAddress003</customerAddress>
 <customerTel>11111111111</customerTel>
 <chargeBranchId>003</chargeBranchId>
 </Customer>
</records>

300 | 5.3. File Access

About XML file fomatX(line break and indents)

In the sample above, the output XML file has been formatted(has line break and
indents), but the actual XML will not be formatted.

Jaxb2Marshaller has a function to format it when outputting the XML file, but it
does not work as is it expected.
This issue is being discussed in the Spring Forum, and might be fixed in the future.

To avoid this and output the formatted XML, set marshallerProperties as below.

<property name="marshaller">
 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
 <property name="classesToBeBound">
 <!-- omitted settings -->
 </property>
 <property name="marshallerProperties">
 <map>
 <entry>
 <key>
 <util:constant
 static-
field="javax.xml.bind.Marshaller.JAXB_FORMATTED_OUTPUT"/>
 </key>
 <value type="java.lang.Boolean">true</value>
 </entry>
 </map>
 </property>
 </bean>
</property>

5.3. File Access | 301

Class to be converted

@XmlRootElement(name = "Customer") // (1)
@XmlType(propOrder={"customerId", "customerName", "customerAddress",
 "customerTel", "chargeBranchId"}) // (2)
public class CustomerToJaxb {

 private String customerId;
 private String customerName;
 private String customerAddress;
 private String customerTel;
 private String chargeBranchId;
 private Timestamp createDate;
 private Timestamp updateDate;

 // omitted getter/setter

 @XmlTransient // (3)
 public Timestamp getCreateDate() { return createDate; }

 @XmlTransient // (3)
 public Timestamp getUpdateDate() { return updateDate; }
}

Item list of setting contents

No Description

(1) Add @XmlRootElement annotation to make this as the root tag of XML.
Set Customer for the tag name.

(2) Use @XmlType annotation to set field output order.

(3) Add @XmlTransient to getter method of fileds which is to be excluded from XML
conversion.

The settings for writing the above file are as follows.

302 | 5.3. File Access

Bean definition

<!-- (1) (2) (3) (4) (5) (6) -->
<bean id="writer"
 class="org.springframework.batch.item.xml.StaxEventItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="MS932"
 p:rootTagName="records"
 p:overwriteOutput="true"
 p:shouldDeleteIfEmpty="false"
 p:transactional="true">
 <property name="marshaller"> <!-- (7) -->
 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
 <property name="classesToBeBound"> <!-- (8) -->
 <list>

<value>org.terasoluna.batch.functionaltest.ch05.fileaccess.model.mst.CustomerToJaxb</v
alue>
 </list>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) resource Set output file Nothing

(2) encoding Set character encoding for output file
 Default value of character code for the
component offered by Spring Batch varies
for ItemReader and ItemWriter (Default
value of ItemReader is "Default character
set of JavaVM").
Hence, it is recommended to explicitly set
character code even while using default
value.

UTF-8

(3) rootTagName Set XML root tag name.

(4) overwriteOutput If true, delete the file if it already exists.
If false, throw an exception if the file
already exists.

true

5.3. File Access | 303

No Property Name Setting contents Require
d

Default Value

(5) shouldDeleteIfEm
pty

If true, delete the file for output if output
count is 0.
 Since unintended behaviour is likely to
happen by combining with other
properties, it is recommended not to set it
to true. For details, refer Notes for how to
output variable length record.

false

(6) transactional Set whether to perform transaction control.
For details, see Transaction Control.

true

(7) marshaller Set the marshaller. Set
org.springframework.oxm.jaxb.Jaxb2Marshal
ler when using JAXB.

 Nothing

(8) classesToBeBound Set conversion target classes in list format. Nothing

Adding dependency library

Library dependency needs to be added as below when using Spring Object/Xml
Marshalling provided by Spring Framework such as
org.springframework.oxm.jaxb.Jaxb2Marshaller.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-oxm</artifactId>
</dependency>

] ===== Output Header / Footer

For output of header and footer, use the implementation class of
org.springframework.batch.item.xml.StaxWriterCallback.

Set implementation of headerCallback for header output, and footerCallback for footer output.

Below is a sample of output file.
Header is printed right after the opening element of root tag, and footer is printed right before the
closing tag of root element.

304 | 5.3. File Access

Output file example

<?xml version="1.0" encoding="UTF-8"?>
<records>
<!-- Customer list header -->
 <Customer>
 <customerId>001</customerId>
 <customerName>CustomerName001</customerName>
 <customerAddress>CustomerAddress001</customerAddress>
 <customerTel>11111111111</customerTel>
 <chargeBranchId>001</chargeBranchId></Customer>
 <Customer>
 <customerId>002</customerId>
 <customerName>CustomerName002</customerName>
 <customerAddress>CustomerAddress002</customerAddress>
 <customerTel>11111111111</customerTel>
 <chargeBranchId>002</chargeBranchId></Customer>
 <Customer>
 <customerId>003</customerId>
 <customerName>CustomerName003</customerName>
 <customerAddress>CustomerAddress003</customerAddress>
 <customerTel>11111111111</customerTel>
 <chargeBranchId>003</chargeBranchId>
 </Customer>
<!-- Customer list footer -->
</records>

About XML file fomatX(line break and indents)

In the sample above, the output XML file has been formatted(has line break and
indents), but the actual XML will not be formatted.

Refer to Output for details.

To output the above file, do the setting as below.

Bean definition

<!-- (1) (2) -->
<bean id="writer"
 class="org.springframework.batch.item.xml.StaxEventItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:headerCallback-ref="writeHeaderStaxWriterCallback"
 p:footerCallback-ref="writeFooterStaxWriterCallback">
 <property name="marshaller">
 <!-- omitted settings -->
 </property>
</bean>

Item list of setting contents

5.3. File Access | 305

No Property Name Setting contents Require
d

Default Value

(1) headerCallback Set implementation class of
StaxWriterCallback.

(2) footerCallback Set implementation class of
StaxWriterCallback.

Implement StaxWriterCallback as follows.

• Implement StaxWriterCallback class and override write method

• Print header/footer by using the argument’s XMLEventWriter

Implementation Sample of StaxWriterCallback

@Component
public class WriteHeaderStaxWriterCallback implements StaxWriterCallback { // (1)
 @Override
 public void write(XMLEventWriter writer) throws IOException {
 XMLEventFactory factory = XMLEventFactory.newInstance();
 try {
 writer.add(factory.createComment(" Customer list header ")); // (2)
 } catch (XMLStreamException e) {
 // omitted exception handling
 }
 }
}

Item list of setting contents

No Description

(1) Implement StaxWriterCallback class and override write method.

(2) Print header/footer by using the argument’s XMLEventWriter

XML output using XMLEventFactory

In the output of the XML file using the XMLEventWriter class, you can efficiently
generate XMLEvent by using the XMLEventFactory class.

The XMLEventWriter class has an add method defined, which takes an XMLEvent
object as an argument and outputs an XML file.
Since it is very time consuming to generate an XMLEvent object each time, use the
XMLEventFactory class which can easily generate XMLEvent.
In the XMLEventFactory class, methods corresponding to the event to be created are
defined, such as createStartDocument method and createStartElement method.

306 | 5.3. File Access

5.3.3.3. Multi format

Describe the definition method when dealing with multi format file.

As described in Overview, multi format is basically (Header N Rows + Data N Rows + Trailer N
Rows) * N + Footer N Rows format, but there are other format patterns like below.

• When there is a footer record or not

• When there are records with different formats in the same record classification

◦ eg) there is a data record that has 5 items and a data record with 6 items in data part

Although there are several patterns to multi format file, implementation method will be the same.

5.3.3.3.1. Input

Use org.springframework.batch.item.file.mapping.PatternMatchingCompositeLineMapper provided by
Spring Batch for reading multi format file.
In multi format file, for each format of each record, mapping to a different bean is necessary.
PatternMatchingCompositeLineMapper will select the LineTokenizer and FieldSetMapper to use for the
record by regular expression.

For example, LineTokenizers to use can be selected like below.

• Use the userTokenizer if it matches the regular expression USER* (the beginning of the record is
USER)

• Use the lineATokenizer if it matches the regular expression LINEA* (the beginning of the record is
LINEA)

Restrictions on the format of records when reading multi-format files

In order to read a multi-format file, it must be in a format that can distinguish
record classification by regular expression.

Implement PatternMatchingCompositeLineMapper as follows.

• Conversion target class defines a class having the record type and inherits it in the class of each
record type.

• Define LineTokenizer and FieldSetMapper to map each record to bean

• Define PatternMatchingCompositeLineMapper

◦ Set LineTokenizer that correspond to each record division to property tokenizers

◦ Set FieldSetMapper that correspond to each record division to property fieldSetMappers

Define a class with record division for conversino target class, and inherit this class
to each classes of each record division

ItemProcessor has a specification that takes one type as an argument.

However, if you simply map PatternMatchingCompositeLineMapper to a multi-format
file to a different bean for each record division, ItemProcessor can not handle

5.3. File Access | 307

multiple types as it takes one type as an argument.

Therefore, it is possible to solve this by giving an inheritance relation to the class
to be converted and specifying a superclass as the type of the argument of
ItemProcessor.

The class diagram of the conversion target class and the definition sample of
ItemProcessor are shown below.

Class diagram of conversion target class

Implementation Sample of ItemProcessor

public class MultiLayoutItemProcessor implements
 ItemProcessor<SalesPlanDetailMultiLayoutRecord, String> {
 @Override
 // (1)
 public String process(SalesPlanDetailMultiLayoutRecord item) throws
Exception {
 String record = item.getRecord(); // (2)

 switch (record) { // (3)
 case "H":
 // omitted business logic
 case "D":
 // omitted business logic
 case "T":
 // omitted business logic
 case "E":
 // omitted business logic
 default:
 // omitted exception handling
 }
 }
}

Item list of setting contents

308 | 5.3. File Access

No Description

(1) Set the superclass of the class to be converted whose inheritance relation
is given as the argument of ItemProcessor.

(2) Get the record division from item.
Actual classes are different depending on each record division, but
record divison can be retrieved by polymorphism.

(3) Judge the record division and process things needed for each record
division.
Perform class conversions as needed.

Here is a setting sample and implementation sample for reading below input file.

Input File Sample

H,Sales_plan_detail header No.1
D,000001,2016,1,0000000001,100000000
D,000001,2016,1,0000000002,200000000
D,000001,2016,1,0000000003,300000000
T,000001,3,600000000
H,Sales_plan_detail header No.2
D,00002,2016,1,0000000004,400000000
D,00002,2016,1,0000000005,500000000
D,00002,2016,1,0000000006,600000000
T,00002,3,1500000000
H,Sales_plan_detail header No.3
D,00003,2016,1,0000000007,700000000
D,00003,2016,1,0000000008,800000000
D,00003,2016,1,0000000009,900000000
T,00003,3,2400000000
E,3,9,4500000000

Below is the bean definition sample of conversion target class.

Class to be converted

/**
 * Model of record indicator of sales plan detail.
 */
public class SalesPlanDetailMultiLayoutRecord {

 protected String record;

 // omitted getter/setter
}

/**
 * Model of sales plan detail header.
 */

5.3. File Access | 309

public class SalesPlanDetailHeader extends SalesPlanDetailMultiLayoutRecord {

 private String description;

 // omitted getter/setter
}

/**
 * Model of Sales plan Detail.
 */
public class SalesPlanDetailData extends SalesPlanDetailMultiLayoutRecord {

 private String branchId;
 private int year;
 private int month;
 private String customerId;
 private BigDecimal amount;

 // omitted getter/setter
}

/**
 * Model of Sales plan Detail.
 */
public class SalesPlanDetailTrailer extends SalesPlanDetailMultiLayoutRecord {

 private String branchId;
 private int number;
 private BigDecimal total;

 // omitted getter/setter
}

/**
 * Model of Sales plan Detail.
 */
public class SalesPlanDetailEnd extends SalesPlanDetailMultiLayoutRecord {
 // omitted getter/setter

 private int headNum;
 private int trailerNum;
 private BigDecimal total;

 // omitted getter/setter
}

The setting for reading the above file is as follows.

Bean definition example

<!-- (1) -->

310 | 5.3. File Access

<bean id="headerDelimitedLineTokenizer"
 class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="record,description"/>

<bean id="dataDelimitedLineTokenizer"
 class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="record,branchId,year,month,customerId,amount"/>

<bean id="trailerDelimitedLineTokenizer"
 class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="record,branchId,number,total"/>

<bean id="endDelimitedLineTokenizer"
 class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="record,headNum,trailerNum,total"/>

<!-- (2) -->
<bean id="headerBeanWrapperFieldSetMapper"
 class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.ch05.fileaccess.model.plan.SalesPlan
DetailHeader"/>

<bean id="dataBeanWrapperFieldSetMapper"
 class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.ch05.fileaccess.model.plan.SalesPlan
DetailData"/>

<bean id="trailerBeanWrapperFieldSetMapper"
 class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.ch05.fileaccess.model.plan.SalesPlan
DetailTrailer"/>

<bean id="endBeanWrapperFieldSetMapper"
 class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.ch05.fileaccess.model.plan.SalesPlan
DetailEnd"/>

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}">
 <property name="lineMapper"> <!-- (3) -->
 <bean
class="org.springframework.batch.item.file.mapping.PatternMatchingCompositeLineMapper"
>
 <property name="tokenizers"> <!-- (4) -->
 <map>
 <entry key="H*" value-ref="headerDelimitedLineTokenizer"/>

5.3. File Access | 311

 <entry key="D*" value-ref="dataDelimitedLineTokenizer"/>
 <entry key="T*" value-ref="trailerDelimitedLineTokenizer"/>
 <entry key="E*" value-ref="endDelimitedLineTokenizer"/>
 </map>
 </property>
 <property name="fieldSetMappers"> <!-- (5) -->
 <map>
 <entry key="H*" value-ref="headerBeanWrapperFieldSetMapper"/>
 <entry key="D*" value-ref="dataBeanWrapperFieldSetMapper"/>
 <entry key="T*" value-ref="trailerBeanWrapperFieldSetMapper"/>
 <entry key="E*" value-ref="endBeanWrapperFieldSetMapper"/>
 </map>
 </property>
 </bean>
 </property>
</bean>

Item list of setting contents

No Property Name Setting contents Require
d

Default Value

(1) The LineTokenizer
corresponding to
each record

Define LineTokenizer that corresponds to
each record.

(2) The
FieldSetMapper
corresponding to
each record

Define FieldSetMapper that corresponds to
each record.

(3) lineMapper Set
org.springframework.batch.item.file.mappi
ng.PatternMatchingCompositeLineMapper.

 Nothing

(4) tokenizers Set LineTokenizer corresponding to each
record in map format.
Set regular expression to determine record
for key, and set the LineTokenizer to use for
value-ref.

 Nothing

(5) fieldSetMappers Set FieldSetMapper corresponding to each
record in map format.
Set regular expression to determine record
for key, and set the FieldSetMapper to use for
value-ref.

 Nothing

5.3.3.3.2. Output

Describe the definition method when dealing with multi format file.

For reading multi format file PatternMatchingCompositeLineMapper was provided to determine which
LineTokenizer and FieldSetMapper to use for each record division.
However for writing, no similar components are provided.

312 | 5.3. File Access

Therefore, processing up to conversion target class to record (character string) within ItemProcessor
is carried out, and ItemWriter writes the received character string as it is to achieve writing of multi
format file .

Implement multi format output as follows.

• ItemProcessor converts the conversion target class to a record (character string) and passes it to
ItemWriter

◦ In the sample, define LineAggregator and FieldExtractor for each record division and use it
by injecting it with ItemProcessor

• ItemWriter writes the received character string as it is to the file

◦ Set PassThroughLineAggregator to property lineAggregator of ItemWriter

◦ PassThroughLineAggregator is LineAggregator which returns item.toString () result of
received item

Here is a setting sample and implementation sample for writing below output file.

Output file example

H,Sales_plan_detail header No.1
D,000001,2016,1,0000000001,100000000
D,000001,2016,1,0000000002,200000000
D,000001,2016,1,0000000003,300000000
T,000001,3,600000000
H,Sales_plan_detail header No.2
D,00002,2016,1,0000000004,400000000
D,00002,2016,1,0000000005,500000000
D,00002,2016,1,0000000006,600000000
T,00002,3,1500000000
H,Sales_plan_detail header No.3
D,00003,2016,1,0000000007,700000000
D,00003,2016,1,0000000008,800000000
D,00003,2016,1,0000000009,900000000
T,00003,3,2400000000
E,3,9,4500000000

Definition of conversion target class and ItemProcessor sample, notes are the same as Multi format
Input.

Settings to output above file is as below. Bean definition sample for ItemProcessor is written later.

5.3. File Access | 313

Bean definition example

<!-- (1) -->
<bean id="headerDelimitedLineAggregator"
 class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="record,description"/>
 </property>
</bean>

<bean id="dataDelimitedLineAggregator"
 class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="record,branchId,year,month,customerId,amount"/>
 </property>
</bean>

<bean id="trailerDelimitedLineAggregator"
 class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="record,branchId,number,total"/>
 </property>
</bean>

<bean id="endDelimitedLineAggregator"
 class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="record,headNum,trailerNum,total"/>
 </property>
</bean>

<bean id="writer" class="org.springframework.batch.item.file.FlatFileItemWriter"
scope="step"
 p:resource="file:#{jobParameters['outputFile']}"/>
 <property name="lineAggregator"> <!-- (2) -->
 <bean
class="org.springframework.batch.item.file.transform.PassThroughLineAggregator"/>
 </property>
</bean>

Item list of setting contents

314 | 5.3. File Access

No Property Name Setting contents Require
d

Default Value

(1) The
LineAggregator
and
FieldExtractor
corresponding to
each record
division

Define LineAggregator and FieldExtractor.
Use LineAggregator by injecting it to
ItemProcessor.

(2) lineAggregator Set
org.springframework.batch.item.file.trans
form.PassThroughLineAggregator.

 Nothing

Implementation sample of ItemProcessor is shown below.
In this sample, only the process of converting the received item to a string and passing it to
ItemWriter is performed.

5.3. File Access | 315

Sample Implementation of ItemProcessor

public class MultiLayoutItemProcessor implements
 ItemProcessor<SalesPlanDetailMultiLayoutRecord, String> {

 // (1)
 @Inject
 @Named("headerDelimitedLineAggregator")
 DelimitedLineAggregator<SalesPlanDetailMultiLayoutRecord>
headerDelimitedLineAggregator;

 @Inject
 @Named("dataDelimitedLineAggregator")
 DelimitedLineAggregator<SalesPlanDetailMultiLayoutRecord>
dataDelimitedLineAggregator;

 @Inject
 @Named("trailerDelimitedLineAggregator")
 DelimitedLineAggregator<SalesPlanDetailMultiLayoutRecord>
trailerDelimitedLineAggregator;

 @Inject
 @Named("endDelimitedLineAggregator")
 DelimitedLineAggregator<SalesPlanDetailMultiLayoutRecord>
endDelimitedLineAggregator;

 @Override
 // (2)
 public String process(SalesPlanDetailMultiLayoutRecord item) throws Exception {
 String record = item.getRecord(); // (3)

 switch (record) { // (4)
 case "H":
 return headerDelimitedLineAggregator.aggregate(item); // (5)
 case "D":
 return dataDelimitedLineAggregator.aggregate(item); // (5)
 case "T":
 return trailerDelimitedLineAggregator.aggregate(item); // (5)
 case "E":
 return endDelimitedLineAggregator.aggregate(item); // (5)
 default:
 throw new IncorrectRecordClassificationException(
 "Record classification is incorrect.[value:" + record + "]");
 }
 }
}

Item list of setting contents

316 | 5.3. File Access

No Description

(1) Inject LineAggregator corresponding to each record division.

(2) Set the superclass of the class to be converted whose inheritance relation is given as the
argument of ItemProcessor.

(3) Get the record division from item.

(4) Judge record division and do any process for each record division.

(5) Use LineAggregator corresponding to each record division to convert the conversion
target class to a record (character string) and pass it to ItemWriter.

5.3. File Access | 317

5.4. Exclusive Control

5.4.1. Overview

Exclusive control is a process performed to maintain consistency of data when update processing is
performed simultaneously for the same resource from multiple transactions. In the case where
there is a possibility that updating processing is performed simultaneously for the same resource
from multiple transactions, it is basically necessary to perform exclusive control.

Here, multiple transactions include the following transactions.

• Transaction at the time of simultaneous execution of multiple jobs

• Transaction at the time of simultaneous execution with online processing

Exclusive control of multiple jobs

When multiple jobs are executed at the same time, it is fundamental to design jobs
so that exclusive control is not required. This means that it is basic to divide the
resources to be accessed and the processing target for each job.

Since the concept of exclusive control is same as online processing, please refer to Exclusive Control
in TERASOLUNA Server 5.x Development Guideline

Here, we will focus on the part not explained in TERASOLUNA Server 5.x.

The usage method of this function is same in the chunk model as well as tasklet model.

5.4.1.1. Necessity of Exclusive Control

For the necessity of exclusive control, please refer to Necessity of Exclusive Control in
TERASOLUNA Server 5.x Development Guideline.

5.4.1.2. Exclusive Control for File

Exclusive control for file is generally implemented by file locking.

File Locking

File locking is a mechanism for restricting reading and writing from other programs while using
files with a certain program. The outline of file lock processing is as follows.

Scenario

• The batch process A acquires the lock of the file and starts the file updating process.

• Batch process B attempts to update the same file and fails the attempt to acquire the file lock.

• The batch process A ends the processing and unlocks the file

318 | 5.4. Exclusive Control

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#exclusioncontrol-necessity

Overview of File Lock Processing

1. The Batch Process A tries to acquire the lock of the Target File.

2. The Batch Process A succeeds in acquiring the lock of the Target File.

3. The Batch Process B tries to acquire the lock of the Target File.

4. The Batch Process A writes the Target File.

5. Since the Batch Process A has locked the Target File, the Batch Process B fails to acquire the lock
of the Target File.

6. The Batch Process B performs processing of file update failure.

7. The Batch Process A releases the lock of the Target File.

Prevention of Deadlock

Even for the files, when a lock is to be fetched for multiple files similar to database,
a deadlock may occur. Therefore, it is important to create a rule for update order
of files.
The prevention of deadlock is similar to prevention of deadlock between tables in
the database. For details, refer to Prevention of deadlock in TERASOLUNA Server
5.x Development Guideline.

5.4.1.3. Exclusive Control of Database

For details about Exclusive Control of Database, refer to Exclusive control using database locking in
TERASOLUNA Server 5.x Development Guideline.

5.4.1.4. Choose Exclusive Control Scheme

Explain the locking scheme and suitable situation for TERASOLUNA Batch 5.x.

Choose exclusive control scheme

5.4. Exclusive Control | 319

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#id9
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#id5

Lock scheme Suitable situation

Optimistic locking In a concurrent transaction, when the update results of another transaction
can be considered out of scope of processing and the process can be continued

Pessimistic locking Process wherein the processing time is long and carrying out process again
due to change in status of the data to be processed is difficult.
Process requiring exclusive control for files

5.4.1.5. Relationship between Exclusive Control and Components

The relationship between each component provided by TERASOLUNA Batch 5.x and exclusive
control is as follows.

Optimistic lock

Relationship between exclusive control and components

Processing
model

Component File Database

Chunk ItemReader - Acquires data including a column
that can confirm that the same
data is obtained at the time of
acquiring and updating such as
Version column.

ItemProcesso
r

- Exclusive control is unnecessary.

ItemWriter - Check the difference between an
acquisition and update, confirm
that it is not updated by other
processing, then update.

Tasklet Tasklet - When acquiring data, execute the
processing described in the
ItemReader section, and when
updating the data, the processing
described in ItemWriter section.
The concept is the same when
using the Mapper interface
directly.

Optimistic lock on files

Because of the characteristic of the file, do not apply optimistic lock on files.

Pessimistic lock

Relationship between exclusive control and components

320 | 5.4. Exclusive Control

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#id7
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#id8

Processing
model

Component File Database

Chunk ItemReader - Issue SELECT statement without
using pessimistic lock.

Exclusive control is not
performed in ItemReader as
connection is different from
ItemProcessor and ItemWriter.
Performance is improved by
using minimum required data
(key information) as the
condition to fetch data in
ItemProcessor by SELECT.

ItemProcesso
r

- Using Mapper interface, issue
SELECT FOR UPDATE in SQL
statement by using the data (key
information) fetched in
ItemReader as the condition.

ItemWriter - Update data without considering
exclusive control in ItemWriter
since there is same transaction as
ItemProcessor having pessimistic
lock.

Tasklet Tasklet Get a file lock right after opening
a file with ItemStreamReader.
Release the file lock just before
closing ItemStreamWriter.

When fetching data, directly use
ItemReader or Mapper interface
to issue SELECT FOR UPDATE
statement.
When updating data, implement
the process explained in
ItemWriter. The concept is the
same when using the Mapper
interface directly.

Precautions due to pessimistic lock in database of chunk model

The data (key information) fetched in ItemReader is not exclusively controlled
while it is passed to ItemProcessor and the original data may have been updated
by other transaction. Therefore, the condition of fetching data by ItemProcessor
should include the condition to fetch the data (key information) same as
ItemReader.
When the data cannot be fetched in ItemProcessor, there is a need to consider and
implement continuation or interruption of process considering the possibility that
data is updated by other transaction.

5.4. Exclusive Control | 321

Pessimistic lock on file

Pessimistic lock on files should be implemented in the tasklet model. In the chunk
model, due to its structure, there is a period that can not be excluded in the gap of
chunk processing. Also, it is assumed that file access is done by Injecting
ItemStreamReader / ItemStreamWriter.

Waiting time due to Pessimistic lock in database

When pessimistic locking is performed, the wait time for processing due to
contention may be prolonged. In that case, it is reasonable to use the pessimistic
lock by specifying the NO WAIT option and the timeout time.

5.4.2. How to use

Explain how to use exclusive control by resource.

• Exclusive Control of file

• Exclusive Control of Database

5.4.2.1. Exclusive Control of file

Exclusive control of file with TERASOLUNA Batch 5.x is realized by implementing Tasklet. As the
means of achieving exclusion, exclusive control is performed by file lock acquisition using the
java.nio.channels.FileChannel class.

Details of the FileChannel class

For details and how to use FileChannel class, refer to Javadoc.

Show an example of using FileChannel class to get a file lock.

Tasklet implementation

@Component
@Scope("step")
public class FileExclusiveTasklet implements Tasklet {

 private String targetPath = null; // (1)

 @Inject
 ItemStreamReader<SalesPlanDetail> reader;

 @Inject
 ItemStreamWriter<SalesPlanDetailWithProcessName> writer;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 // omitted.

322 | 5.4. Exclusive Control

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/FileChannel.html

 FileChannel fc = null;
 FileLock fileLock = null;

 try {
 try {
 File file = new File(targetPath);
 fc = FileChannel.open(file.toPath(), StandardOpenOption.WRITE,
 StandardOpenOption.CREATE,
 StandardOpenOption.APPEND); // (2)
 fileLock = fc.tryLock(); // (3)
 } catch (IOException e) {
 logger.error("Failure other than lock acquisition", e);
 throw new FailedOtherAcquireLockException(
 "Failure other than lock acquisition", e);
 }
 if (fileLock == null) {
 logger.error("Failed to acquire lock. [processName={}]", processName);
 throw new FailedAcquireLockException("Failed to acquire lock");
 }

 reader.open(executionContext);
 writer.open(executionContext); // (4)

 // (5)
 SalesPlanDetail item;
 List<SalesPlanDetailWithProcessName> items = new ArrayList<>();
 while ((item = reader.read()) != null) {

 // omitted.

 items.add(item);
 if (items.size() >= 10) {
 writer.write(items);
 items.clear();
 }
 }
 if (items.size() > 0) {
 writer.write(items);
 }

 } finally {
 if (fileLock != null) {
 try {
 fileLock.release(); // (6)
 } catch (IOException e) {
 logger.warn("Lock release failed.", e);
 }
 }
 if (fc != null) {
 try {

5.4. Exclusive Control | 323

 fc.close();
 } catch (IOException e) {
 // do nothing.
 }
 }
 try {
 writer.close(); // (7)
 } catch (ItemStreamException e) {
 // ignore
 }
 try {
 reader.close();
 } catch (ItemStreamException e) {
 // ignore
 }
 }
 return RepeatStatus.FINISHED;
 }

 // (8)
 @Value("#{jobParameters['outputFile']}")
 public void setTargetPath(String targetPath) {
 this.targetPath = targetPath;
 }
}

Description

Sr. No. Description

(1) The file path to be exclusively controlled.

(2) Get file channel.
In this example, channels for new creation, addition and writing of files are obtained.

(3) Get file lock.

(4) Open file to be locked if the file lock is fetched successfully.

(5) Execute business logic with file output.

(6) Release file lock.

(7) Close the file to be exclusively controlled.

(8) Set file path.
In this example, it receives from the job parameter.

About the method of FileChannel used for lock acquisition

It is recommended to use the tryLock() method which is not waiting because the
lock() method waits until the lock is released if the target file is locked. Note that
trylock() can select shared lock and exclusive lock, but in batch processing,
exclusive lock is normally used.

324 | 5.4. Exclusive Control

Exclusive control between threads in the same VM

Attention must be paid to exclusive control between threads in the same VM.
When processing files between threads in the same VM, the lock function using the
FileChannel class cannot determine whether a file is locked by processing of
another thread.
Therefore, exclusive control between threads does not function. In order to avoid
this, exclusive control between threads can be performed by performing
synchronization processing in the part where writing to the file is performed.
However, synchronizing reduces the merit of parallel processing, and it is not
different from processing with a single thread. As a result, since it is not suitable to
perform exclusive control with different threads for the same file and continue
processing, such a process should not be designed and implemented.

About appendAllowed property of FlatFileItemWriter

When creating (overwriting) a file, exclusive control can be realized by setting the
appendAllowed property to false (default). This is because FileChannel is controlled
inside FlatFileItemWriter. However, if the file is appended (appendAllowed property
is true), developers need to implement exclusive control with FileChannel.

5.4.2.2. Exclusive Control of Database

Explain exclusive control of database in TERASOLUNA Batch 5.x.

The exclusive control implementation of the database is basically How to implement while using
MyBatis3 in TERASOLUNA Server 5.x Development Guideline. In this guideline, explanation is given
assuming that the implementation method while using How to implement while using MyBatis3 is
ready.

As shown in Relationship between Exclusive Control and Components, there are variations due to
combination of processing model and component.

Variation of exclusive control of database

Exclusive control
scheme

Processing model Component

Optimistic lock Chunk model ItemReader/ItemWriter

Tasklet model ItemReader/ItemWriter

Mapper interface

Pessimistic lock Chunk model ItemReader/ItemWriter

Tasklet model ItemReader/ItemWriter

Mapper interface

When using the Mapper interface in tasklet model, the explanation is omitted. Refer to How to
implement while using MyBatis3.

5.4. Exclusive Control | 325

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#mybatis3
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#mybatis3
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#mybatis3
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#mybatis3
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/ExclusionControl.html#mybatis3

When using ItemReader/ItemWriter in tasklet model, the calling part in the Mapper interface is
replaced by ItemReader/ItemWriter, so the explanation is also omitted.

Therefore, exclusive control of chunk model will be explained here.

5.4.2.2.1. Optimistic Lock

Explain optimistic lock in chunk model.

Since the behavior of the job changes according to the setting of the assertUpdates property of
MyBatisBatchItemWriter, it is necessary to set it appropriately according to the business
requirements.

Show the job definition for optimistic lock.

job definition

<!-- (1) -->
<bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader" scope="step"

p:queryId="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository.Exclus
iveControlRepository.branchFindOne"
 p:sqlSessionFactory-ref="jobSqlSessionFactory">
 <property name="parameterValues">
 <map>
 <entry key="branchId" value="#{jobParameters['branchId']}"/>
 </map>
 </property>
</bean>

<!-- (2) --->
<bean id="writer"
 class="org.mybatis.spring.batch.MyBatisBatchItemWriter" scope="step"

p:statementId="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository.Ex
clusiveControlRepository.branchExclusiveUpdate"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"
 p:assertUpdates="true" /> <!-- (3) -->

<batch:job id="chunkOptimisticLockCheckJob" job-repository="jobRepository">
 <batch:step id="chunkOptimisticLockCheckJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" processor="branchEditItemProcessor"
 writer="writer" commit-interval="10" />
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

326 | 5.4. Exclusive Control

Sr. No. Description

(1) Set SQLID of data acquisition by optimistic lock.

(2) Set SQLID of data update by optimistic lock.

(3) Set whether to check the number of batch updates.
If set to true (default), throw an exception if the number of updates is 0.
If set to false, perform normal processing even if the number of updates is 0.

5.4.2.2.2. Pessimistic Lock

Explain pessimistic lock in chunk model.

Show the job definition for pessimistic lock.

5.4. Exclusive Control | 327

job definition

<!-- (1) -->
<mybatis:scan
 base-
package="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository"
 template-ref="batchModeSqlSessionTemplate"/>

<!-- (2) -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"
scope="step"

p:queryId="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository.Exclus
iveControlRepository.branchIdFindByName"
 p:sqlSessionFactory-ref="jobSqlSessionFactory">
 <property name="parameterValues">
 <map>
 <entry key="branchName" value="#{jobParameters['branchName']}"/>
 </map>
 </property>
</bean>

<!-- (3) -->
<bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter" scope="step"

p:statementId="org.terasoluna.batch.functionaltest.ch05.exclusivecontrol.repository.Ex
clusiveControlRepository.branchUpdate"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"
 p:assertUpdates="#{new Boolean(jobParameters['assertUpdates'])}"/>

<batch:job id="chunkPessimisticLockCheckJob" job-repository="jobRepository">
 <batch:step id="chunkPessimisticLockCheckJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <!-- (4) -->
 <batch:chunk reader="reader"
processor="branchEditWithkPessimisticLockItemProcessor"
 writer="writer" commit-interval="3"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

328 | 5.4. Exclusive Control

ItemProcessor performing pessimistic lock

@Component
@Scope("step")
public class BranchEditWithkPessimisticLockItemProcessor implements ItemProcessor
<String, ExclusiveBranch> {

 // (5)
 @Inject
 ExclusiveControlRepository exclusiveControlRepository;

 // (6)
 @Value("#{jobParameters['branchName']}")
 private String branchName;

 //omitted.

 @Override
 public ExclusiveBranch process(String item) throws Exception {

 // (7)
 Branch branch = exclusiveControlRepository.branchFindOneByNameWithNowWaitLock
(item, branchName);

 if (branch != null) {
 ExclusiveBranch updatedBranch = new ExclusiveBranch();

 updatedBranch.setBranchId(branch.getBranchId());
 updatedBranch.setBranchName(branch.getBranchName() + " - " + identifier);
 updatedBranch.setBranchAddress(branch.getBranchAddress() + " - " +
identifier);
 updatedBranch.setBranchTel(branch.getBranchTel());
 updatedBranch.setCreateDate(branch.getUpdateDate());
 updatedBranch.setUpdateDate(new Timestamp(clock.millis()));
 updatedBranch.setOldBranchName(branch.getBranchName());

 return updatedBranch;
 } else {
 // (8)
 logger.warn("An update by another user occurred. [branchId: {}]", item);
 return null;
 }
 }
}

Explanation

Sr. No. Explanation

(1) Set batchModeSqlSessionTemplate such that Mapper interface is in the update mode as
ItemWriter.

5.4. Exclusive Control | 329

Sr. No. Explanation

(2) Set SQLID for data fetch without pessimistic lock.
Set branchName from job start parameter as extraction condition. Performance can be
improved by narrowing down the items fetched by this SQL to minimum required in
order to uniquely identify the data in (6).

(3) Set SQLID same as SQL for data update without exclusive control.

(4) Set ItemProcessor for data fetch by pessimistic lock.

(5) Inject Mapper interface for data fetch by pessimistic lock.

(6) Set branchName from job start parameter as extraction condition of pessimistic lock.

(7) Call method for data fetch by pessimistic lock.
Since same conditions as the extraction conditions of (2) are set, job start parameter
branchName is passed as an argument in addition to key information (id).
When pessimistic lock is performed by setting NO WAIT and timeout and exclusion is
performed by other transaction, an exception occurs here.

(8) When the target data is updated first by another transaction and it cannot be fetched,
the method for data fetch by pessimistic lock returns null.
When the method for data fetch by pessimistic lock returns null, an exception occurs
and it is required to handle it as per business requirements such as interrupting the
process.
Here, the subsequent process continues by ouput of WARN log and returning null.

Regarding components performing pessimistic lock in tasklet model

Use ItemReader that issues SQL for performing pessimistic lock in tasklet model.It
is same when using Mapper interface directly.

330 | 5.4. Exclusive Control

Chapter 6. Support to abnormal system

6.1. Input Check

6.1.1. Overview

In this section, the validation check of the input data for the job (hereinafter referred to as input
validation) is explained.

Usage of this function is the same for chunk model and tasklet model.

In general, input validation in batch processing is often carried out to confirm that data received
from other systems etc. is valid in its own system.
Conversely, it can be said that it is unnecessary to perform input validation on reliable data in its
own system (for example, data stored in the database).

Please refer to input Validation in TERASOLUNA Server 5.x Development Guideline because the
input validation duplicates the contents of TERASOLUNA Server 5.x. Explain the main comparisons
below.

Main comparison list

Comparison target TERASOLUNA Server 5.x TERASOLUNA Batch 5.x

Available input validation
rules

Same as TERASOLUNA Server 5.x

The target to which the rule
is attached

form class DTO

Validation execute method Give @Validated annotation to
the Controller

Call the API of Validator class

Error message settings Same as Definition of error messages in TERASOLUNA Server 5.x
Development Guideline.

Error message output
destination

View Log etc.

The input validation to be explained in this section mainly covers data obtained from ItemReader.
For checking job parameters, refer to Validation check of parameters.

6.1.1.1. Classification of input validation

The input validation is classified into single item check and correlation item check.

List of setting contents

Type Description Example Implementation method

Single item
check

Check to be completed with
a single field

Required input check
Digit check
Type check

Bean Validation (using
Hibernate Validator as
implementation library)

6.1. Input Check | 331

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-message-def

Type Description Example Implementation method

Correlation
item check

Check to compare multiple
fields

Comparison of
numerical values
Comparison of dates

Validation class that
implements
org.springframework.validat
ion.Validator interface
or Bean Validation

Spring supports Bean Validation which is a Java standard. For this single item check, this Bean
Validation is used. For correlation item check, use Bean Validation of the
org.springframework.validation.Validator interface provided by Spring.

In this respect, same as Classification of input validation in TERASOLUNA Server 5.x Development
Guideline.

6.1.1.2. Overview of Input Validation

The timing of input validation in the chunk model and tasklet model is as follows.

• For chunk model, use ItemProcessor

• For tasklet model, use Tasklet#execute() at an arbitrary timing.

In the chunk model and tasklet model, the implementation method of input validation is the same,
so here, explain the case where input validation is done in ItemProcessor of the chunk model.

First, explain an overview of input validation. The relationships of classes related to input
validation are as follows.

Related class of input validation

• Inject org.springframework.batch.item.validator.SpringValidator which is the implementation
of org.springframework.batch.item.validator.Validator in ItemProcessor and execute the
validate method.

◦ SpringValidator internally holds org.springframework.validation.Validator and execute the
validate method.
It can be said that it is a wrapper for org.springframework.validation.Validator.
The implementation of org.springframework.validation.Validator is
org.springframework.validation.beanvalidation.LocalValidatorFactoryBean. Use Hibernate

332 | 6.1. Input Check

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#id3

Validator through this class.

• Implement org.springframework.batch.item.ItemCountAware in the input DTO to determine
where the input validation error has occured in any data record.

Setting the number of data

ItemCountAware#setItemCount is set by AbstractItemCountingItemStreamItemReader.
Therefore, if you do not use ItemReader in the tasklet model, it will not be updated.
In this case, it is necessary for the user to set what error occurred in the data.

Validators such as javax.validation.Validator or
org.springframework.validation.Validator should not be used directly.

Validators such as javax.validation.Validator or
org.springframework.validation.Validator should not be used directly, use
org.springframework.batch.item.validator.SpringValidator.

SpringValidator is wrapper of org.springframework.validation.Validator.
SpringValidator wraps the raised exception in BindException and throws it as
ValidationException.
Therefore, BindException can be accessed via ValidationException which makes
flexible handling easier.

On the other hand, if validators such as javax.validation.Validator and
org.springframework.validation.Validator are used directly, it will be complicated
logic to process the information that caused the validation error.

Do not use org.springframework.batch.item.validator.ValidatingItemProcessor

The input validation by org.springframework.validation.Validator can also be
realized by using ValidatingItemProcessor provided by Spring Batch.

However, depending on the circumstances, it is necessary to extend it because of
the following reasons, so do not use it from the viewpoint of unifying the
implementation method.

• The input validation error cannot be handled and processing cannot be
continued.

• It is not possible to flexibly deal with data that has become an input validation
error.

◦ It is assumed that the processing of the data that resulted in input
validation error will vary depending on the user (only log output, save
error data to another file, etc.).

6.1.2. How to use

As mentioned earlier, the implementation method of input validation is the same as TERASOLUNA
Server 5.x as follows.

6.1. Input Check | 333

• single item check uses the Bean Validation.

• correlation item check uses Bean Validation or the org.springframework.validation.Validator
interface provided by Spring.

Explain the method of input validation in the following order.

• Various settings

• Input validation rule definition

• Input validation execution

• Input validation error handling

6.1.2.1. Various settings

Use Hibernate Validator for input validation. Confirm that the definition of Hibernate Validator is
in the library dependency and that the required bean definition exists. These have already been set
in the blank project provided by TERASOLUNA Batch 5.x.

Setting example of dependent library

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
</dependency>

launch-context.xml

<bean id="validator" class="org.springframework.batch.item.validator.SpringValidator"
 p:validator-ref="beanValidator"/>

<bean id="beanValidator"
 class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"
/>

Error message setting

As mentioned earlier, for setting of error messages, refer to Definition of error messages in
TERASOLUNA Server 5.x Development Guideline.

6.1.2.2. Input validation rule definition

The target of implementing the rule of input validation is the DTO obtained through ItemReader.
Implement the DTO obtained through ItemReader as follows.

• Implement org.springframework.batch.item.ItemCountAware in the input DTO to determine
where the input validation error has occured in any data record.

◦ In the setItemCount method, hold a numerical value in the class field indicating the number
of items read in the currently processed item received as an argument.

• Define the input validation rule.

334 | 6.1. Input Check

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-message-def

◦ refer to Input Validation in TERASOLUNA Server 5.x Development Guideline.

Show an example of a DTO defining an input validation rule below.

An example of a DTO defining an input validation rule

public class VerificationSalesPlanDetail implements ItemCountAware { // (1)

 private int count;

 @NotEmpty
 @Size(min = 1, max = 6)
 private String branchId;

 @NotNull
 @Min(1)
 @Max(9999)
 private int year;

 @NotNull
 @Min(1)
 @Max(12)
 private int month;

 @NotEmpty
 @Size(min = 1, max = 10)
 private String customerId;

 @NotNull
 @DecimalMin("0")
 @DecimalMax("9999999999")
 private BigDecimal amount;

 @Override
 public void setItemCount(int count) {
 this.count = count; // (2)
 }

 // omitted getter/setter
}

List of setting contents

Sr. No. Description

(1) Implement the ItemCountAware class and override the setItemCount method.
ItemCountAware#setItemCount() is passed to the argument as to what the data read by
ItemReader is.

(2) Holds the count received in the argument in the class field.
This value is used to determine the number of items of data that caused an input
validation error.

6.1. Input Check | 335

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html

6.1.2.3. Input validation execution

Explain how to implement input validation. Implement input validation execution as follows.

• Execute org.springframework.batch.item.validator.Validator#validate() in the implementation
of ItemProcessor.

◦ Use an instance of SpringValidator by injecting it as Validator field.

• Handle input validation error. For details, refer to Input validation error handling.

Show an implementation example of input validation below.

An implementation example of input validation

@Component
public class ValidateAndContinueItemProcessor implements ItemProcessor
<VerificationSalesPlanDetail, SalesPlanDetail> {
 @Inject // (1)
 Validator<VerificationSalesPlanDetail> validator;

 @Override
 public SalesPlanDetail process(VerificationSalesPlanDetail item) throws Exception
{
 try { // (2)
 validator.validate(item); // (3)
 } catch (ValidationException e) {
 // omitted exception handling
 }

 SalesPlanDetail salesPlanDetail = new SalesPlanDetail();
 // omitted business logic

 return salesPlanDetail;
 }
}

List of setting contents

Sr. No. Description

(1) Inject SpringValidator instance.
For the type argument of org.springframework.batch.item.validator.Validator, set the
DTO to be acquired via ItemReader.

(2) Handle input validation error.
In the example, exception is handled by catching with try/catch.
For details, refer to Input validation error handling.

(3) Execute Validator#validate() with the DTO obtained through ItemReader as an argument.

336 | 6.1. Input Check

6.1.2.4. Input validation error handling

There are following 2 ways to handle input validation error.

1. Processing was aborted at the time when an input validation error occurs and the job is
abnormally terminated.

2. Record the occurrence of an input validation error in the log, etc and continue processing the
subsequent data. Thereafter, the job is terminated by specifying a warning at the end of the job.

6.1.2.4.1. Abnormal Termination of Processing

In order to abnormally terminate processing when an exception occurs, it throws
java.lang.RuntimeException or its subclass.

There are two ways to perform processing such as log output when an exception occurs.

1. Catch exceptions with try/catch and do it before throwing an exception.

2. Do not catch exceptions with try/catch, implement ItemProcessListener and do it with the
onProcessError method.

◦ ItemProcessListener#onProcessError() can be implemented using the @OnProcessError
annotation. For details, refer to Listener.

Following is an example of logging exception information and abnormally terminating processing
when an exception occurs.

6.1. Input Check | 337

An error handling example with try/catch

@Component
public class ValidateAndAbortItemProcessor implements ItemProcessor
<VerificationSalesPlanDetail, SalesPlanDetail> {
 /**
 * Logger.
 */
 private static final Logger logger = LoggerFactory.getLogger
(ValidateAndAbortItemProcessor.class);

 @Inject
 Validator<VerificationSalesPlanDetail> validator;

 @Override
 public SalesPlanDetail process(VerificationSalesPlanDetail item) throws Exception
{
 try { // (1)
 validator.validate(item); // (2)
 } catch (ValidationException e) {
 // (3)
 logger.error("Exception occurred in input validation at the {} th item.
[message:{}]",
 item.getCount(), e.getMessage());
 throw e; // (4)
 }

 SalesPlanDetail salesPlanDetail = new SalesPlanDetail();
 // omitted business logic

 return salesPlanDetail;
 }
}

List of setting contents

Sr. No. Description

(1) Catch exceptions with try/catch.

(2) Execute input validation.

(3) Perform log output processing before throwing an exception.

(4) Throw exceptions
Since org.springframework.batch.item.validator.ValidationException is a subclass of
RuntimeException, it can be thrown as it is.

338 | 6.1. Input Check

An error handling example with ItemProcessListener#OnProcessError

@Component
public class ValidateAndAbortItemProcessor implements ItemProcessor
<VerificationSalesPlanDetail, SalesPlanDetail> {

 /**
 * Logger.
 */
 private static final Logger logger = LoggerFactory.getLogger
(ValidateAndAbortItemProcessor.class);

 @Inject
 Validator<VerificationSalesPlanDetail> validator;

 @Override
 public SalesPlanDetail process(VerificationSalesPlanDetail item) throws Exception
{
 validator.validate(item); // (1)

 SalesPlanDetail salesPlanDetail = new SalesPlanDetail();
 // omitted business logic

 return salesPlanDetail;
 }

 @OnProcessError // (2)
 void onProcessError(VerificationSalesPlanDetail item, Exception e) {
 // (3)
 logger.error("Exception occurred in input validation at the {} th item.
[message:{}]", item.getCount() ,e.getMessage());
 }
}

List of setting contents

Sr. No. Description

(1) Execute input validation.

(2) Implement ItemProcessListener#onProcessError() using @OnProcessError annotation.

(3) Perform log output processing before throwing an exception.

6.1. Input Check | 339

Note on using ItemProcessListener#onProcessError()

Using of the onProcessError method is useful for improving the readability of
source code, maintainability, etc. since it enables to separate business process and
exception handling.
However, when an exception other than ValidationException performing handling
processing in the above example occurs, the same method is executed, so it is
necessary to be careful.

When outputting log output in ItemProcessor#process() by exception, it is
necessary to judge the kind of exception caused by the onProcessError method and
handle exception. If this is cumbersome, it is good to share responsibility so that
only input validation errors are handled by handling with try / catch and others
are handed over to listeners.

6.1.2.4.2. Skipping Error Records

After logging the information of the record where input validation error occurred, skip the record
where the error occurred and continue the processing of the subsequent data as follows.

• Catch exceptions with try/catch.

• Perform log output etc. when an exceptions occurs.

• Return null as the return value of ItemProcessor#process().

◦ By returning null, records in which an input validation error occurs are no longer included
in subsequent processing targets (output with ItemWriter).

340 | 6.1. Input Check

A skipping example with ItemProcessor

@Component
public class ValidateAndContinueItemProcessor implements ItemProcessor
<VerificationSalesPlanDetail, SalesPlanDetail> {
 /**
 * Logger.
 */
 private static final Logger logger = LoggerFactory.getLogger
(ValidateAndContinueItemProcessor.class);

 @Inject
 Validator<VerificationSalesPlanDetail> validator;

 @Override
 public SalesPlanDetail process(VerificationSalesPlanDetail item) throws Exception
{
 try { // (1)
 validator.validate(item); // (2)
 } catch (ValidationException e) {
 // (3)
 logger.warn("Skipping item because exception occurred in input validation
at the {} th item. [message:{}]",
 item.getCount(), e.getMessage());
 // (4)
 return null; // skipping item
 }

 SalesPlanDetail salesPlanDetail = new SalesPlanDetail();
 // omitted business logic

 return salesPlanDetail;
 }
}

List of setting contents

Sr. No. Description

(1) Catch exceptions with try/catch

(2) Execute the input validation.

(3) Perform log output processing before returning null.

(4) Return null to skip this data and move on to the next data processing.

6.1.2.4.3. Setting the exit code

When an input validation error occurs, in order to distinguish between the case where input
validation error did not occur and the state of the job, be sure to set an exit code that is not a
normal termination.

6.1. Input Check | 341

If data with input validation error is skipped, setting of exit code is required even when abnormal
termination occurs.

For details on how to set the exit code, refer to Job Management.

6.1.2.4.4. Output of error messages

Any error message can be output by using MessageSource when input check error occurs. For the
settings of error message, refer Definition of error message in TERASOLUNA Server 5.x
Development Guideline. Implement as follows when error message is output.

There are 2 methods to output error message in 1 record as shown below.

1. Collectively output 1 error message.

2. Output error message for each field of record.

In the example, it is implemented by the method of output of error message for each field.

• Catch exception ValidationException that occurs in input check error by try/catch.

• Fetch org.springframework.validation.BindException by getCause method of ValidationException.

◦ FiledError can be fetched since BindException performs implements of BindResult.

• Fetch FiledError repetitively one by one for the number of errors by getFieldErrors method.

• Output error message one by one by MessageSource by considering the fetched FieldError as an
argument.

342 | 6.1. Input Check

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-message-def

Error message output example by MessageSource

@Component
public class ValidateAndMessageItemProcessor implements ItemProcessor
<VerificationSalesPlanDetail, SalesPlanDetail> {
 /**
 * Logger.
 */
 private static final Logger logger = LoggerFactory.getLogger
(ValidateAndMessageItemProcessor.class);

 @Inject
 Validator<VerificationSalesPlanDetail> validator;

 @Inject
 MessageSource messageSource; // (1)

 @Override
 public SalesPlanDetail process(VerificationSalesPlanDetail item) throws Exception
{
 try { // (2)
 validator.validate(item); // (3)
 } catch (ValidationException e) {
 // (4)
 BindException errors = (BindException) e.getCause();

 // (5)
 for (FieldError fieldError : errors.getFieldErrors()) {
 // (6)
 logger.warn(messageSource.getMessage(fieldError, null) +
 "Skipping item because exception occurred in input
validation at the {} th item. [message:{}]",
 item.getCount(), e.getMessage());
 // (7)
 return null; // skipping item
 }

 SalesPlanDetail salesPlanDetail = new SalesPlanDetail();
 // omitted business logic

 return salesPlanDetail;
 }
}

Item list of setting contents

Sr. No. Explanation

(1) Inject the instance of ResourceBundleMessageSource.
For Bean definition of MassageSorce, refer Message management.

6.1. Input Check | 343

Sr. No. Explanation

(2) Catch exceptions with try/catch.

(3) Execute input validation.

(4) Fetch org.springframework.validation.BindException with getCause().

(5) Fetch FiledError for each record with getFieldErrors().

(6) Perform output process of error message with messageSource by considering the fetched
FieldError as an argument.
If there are 3 errors in 1 record, output 3 error messages repeatedly.

(7) By returning null, skip this data and move to the next data process.

344 | 6.1. Input Check

6.2. Exception handling

6.2.1. Overview

How to handle exception generated at the time of job execution is explained.

Since this function has different usage for chunk model and tasklet model, each will be explained.

First, classification of exceptions is explained, and handling method according to the type of
exception is explained.

6.2.1.1. Classification of exception

The exception generated at the time of job execution are classified into 3 types as below.

Classification list of exceptions

Sr.
No.

Classification Description Exception type

(1) Exception wherein the cause
can be resolved by re-
execution of the job (change
/ modification of parameter,
input data etc).

For the exception wherein the
cause can be resolved by re-
execution of a job, exception is
handled in the application code
and exception handling is
performed.

Business exception
Library exception occurring
during normal operation

(2) Exception that cannot be
resolved by job re-execution.

Exceptions that can be resolved
by job re-execution are handled
with the following pattern.

1. If the exception can be
captured in StepListener,
exception is handled in the
application code.

2. If the exception cannot be
captured in StepListener,
exception is handled in the
framework.

System exception
Unexpected system
exception
Fatal error

6.2. Exception handling | 345

(3) (During asynchronous
execution)Exception caused
by illegal request for job
request

Exception caused by illegal
request of job request is handled
in the framework and performs
exception handling.

 In case of Asynchronous
execution (DB polling) in the
polling process, the validity of the
job request is not
verified.Therefore, it is desirable
that the input check for the
request is made in advance by
the application that registers the
job request.

 In case of Asynchronous
execution (Web container), it is
assumed that the input check for
the request is made in advance,
by the Web application.

Therefore, exception handling is
performed in an application that
accepts requests or job requests.

Invalid job request error

Avoid a transaction processing within the exception processing

If transactional processing such as writing to a database is performed in exception
processing, a secondary exception is likely to occur. Exception processing should
be based on output log analysis and end code setting.

6.2.1.2. Exception type

Types of exceptions are explained.

6.2.1.2.1. Business exception

A business exception is an exception notifying that a violation of a business rule has been
detected.
This exception is generated within the logic of the step.
Since it is assumed to be an application state, handling by system operator is not required.

Business exception example

• When "out-of-stock" at the time of inventory allocation

• When the number of days exceeds the scheduled date

• etc …

346 | 6.2. Exception handling

Applicable exception class

• java.lang.RuntimeException and its subclass

◦ It is recommended to create business exception classes by the user.

6.2.1.2.2. Library exception occurring during normal operation

A library exception that occurs during normal operation refers to an exception that may occur
when the system is operating normally, among the exceptions generated in the framework and
library.
Exceptions raised in the framework and library are exception classes that occur in the Spring
Framework and other libraries.
Since it is assumed to be an application state, it is not necessary to deal with the system operator.

Example of library exception that occurs during normal operation

• Optimistic lock exception which occurs in exclusive control with online processing.

• Unique constraint exception that occurs when registering the same data at the same time from
multiple jobs or online processing.

• etc …

Applicable exception class

• org.springframework.dao.EmptyResultDataAccessException (Exception that
occurs when optimistic locking is done, when data update count is 0)

• org.springframework.dao.DuplicateKeyException (Exception that occurs when a
unique constraint violation occurs)

• etc …

6.2.1.2.3. System exception

A system exception is an exception to notify that a state that should not occur is detected when
the system is operating normally.
This exception is generated within the logic of the step.
The action of the system operator is required.

Example of a system exception

• When master data, directory, file, etc which should exist in advance, do not exist.

• When an exception classified as system abnormality is captured (IOException at file operation,
etc.) from the checked exceptions occurring in the framework or library.

• etc…

Applicable exception class

• java.lang.RuntimeException or its subclass

◦ Creating a system exception class is recommended.

6.2. Exception handling | 347

6.2.1.2.4. Unexpected system exception

Unexpected system exceptions are non-inspection exceptions that do not occur when the system
is operating normally.
It is necessary for the system operator to deal with it or to analyze it by the system developer.

Unexpected system exceptions will not be handled except by doing the following processing. If
handled, throw the exception again.

• Log capture exception for analysis and set the corresponding exit code.

Unexpected system exception example

• Bugs are hidden in applications, frameworks, and libraries.

• When the database server is down.

• etc…

Applicable exception class

• java.lang.NullPointerException (Exception caused by a bug)

• org.springframework.dao.DataAccessResourceFailureException(Exception raised
when the database server is down)

• etc …

6.2.1.2.5. Fatal error

A fatal error is an error that notifies that a fatal problem has occurred that affects the entire
system (application).
It is necessary for system operator or system developer to cope with it and recover.

Fatal errors are not handled except for the following processing.If handled, throw the exception
again.

• Log capture exception for analysis and set the corresponding exit code.

Fatal error example

• When memory available for Java virtual machine is insufficient.

• etc…

Applicable exception class

• Classes that inheritjava.lang.Error.

◦ java.lang.OutOfMemoryError (Error occurred when memory is
insufficient)etc

• etc …

6.2.1.2.6. Invalid job request error

The invalid job request error is an error to notify that a problem has occurred in the request for

348 | 6.2. Exception handling

job request during asynchronous execution.
It is necessary for the system operator to cope with and recover from it.

The invalid job request error is an error based on exception handling in the application which
processes job requests, and hence it is not explained in this guideline.

6.2.1.3. How to handle exceptions

How to handle exceptions is explained.

The exception handling pattern is as follows.

1. Decide whether to continue the job when an exception occurs (3 types)

2. Decide how to re-execute the suspended job (2 types)

How to decide whether to continue the job

Sr.No. How to handle
exceptions

Description

(1) Skip Skip error record and continue processing.

(2) Retry Reprocess the error record until the specified condition
(number of times, time etc.) is reached.

(3) Process interruption Processing is interrupted.

Even if an exception has not occurred, the job may stop while processing because
the job has exceeded the expected processing time.
In this case, please refer Stopping a job.

How to re-execute the suspended job

Sr.No. How to handle
exceptions

Description

(1) Job rerun Re-executes the suspended job from the beginning.

(2) Job restart Re-executes the interrupted job from the point where it was
interrupted.

For details, please refer how to re-execute the suspended job Rerun processing.

6.2.1.3.1. Skip

Skipping is a method of skipping error data without stopping batch processing and continuing
processing.

Skipping example

• Invalid record exists in input data

• When a business exception occurs

• etc …

6.2. Exception handling | 349

Reprocess skipped record

When skipping the records, design how to deal with skipped invalid records.
Methods like extracting and reprocessing invalid records, processing the records
by including those at the time of subsequent execution can be considered.

6.2.1.3.2. Retry

Retrying is a method of repeatedly attempting until a specified number of times or time is reached
for a record that failed a specific process.
It is used only when the cause of processing failure depends on the execution environment and it is
expected to be resolved over time.

Example of retrying

• When the record to be processed is locked by exclusive control

• When message transmission fails due to instantaneous interruption of network

• etc …

Application of retry

If the retry is applied in every scene, the processing time unnecessarily increases
at the time of occurrence of an abnormality resulting in risk of delayed detection
of the abnormality.
Therefore, it is desirable to apply the retry to only a part of the process and it is
advisable to limit it to the processes like linking with external systems which are
less reliable.

6.2.1.3.3. Process interruption

Process interruption is literally a method of interrupting processing midway.
It is used when processing cannot be continued on detecting an erroneous content or when there is
requirement which does not allow skipping of records.

Examples of processing interruption

• Invalid record exists in input data

• When a business exception occurs

• etc …

6.2.2. How to use

Implementation of exception handling is explained.

A log is the main user interface for batch application operation.Therefore, monitoring of exception
occurred will also be done through the log.

In Spring Batch, if an exception occurs during step execution, the log is output and process is
abnormally terminated, so the requirement can be satisfied without additional implementation by
the user. The following explanation should be implemented pinpoint only when it is necessary for

350 | 6.2. Exception handling

the user to output logs according to the system. Basically, all the processes are not required to be
implemented.

For common log setting of exception handling, please refer Logging.

6.2.2.1. Step unit exception handling

Explain how to handle exceptions in step units.

Exception handling with ChunkListener interface

If you want to handle exceptions uniquely regardless of the processing model, use
ChunkListener interface.
Although it can be implemented by using a step or job listener which is wider in scope than
chunk, adopt ChunkListener and put an emphasis on carrying out the handling immediately after
the occurrence.

The exception handling method for each processing model is as follows.

Exception handling in chunk model

Implement the function using various Listener interfaces provided by Spring Batch.

Exception handling in tasklet model

Implement exception handling independently within tasklet implementation.

Why unified handling possible with ChunkListener.

A sense of incompatibility might be felt with ChunkListener being able to handle
exceptions occurring within tasklet implementation. This is because in Spring
Batch, execution of business logic is considered based on chunk, since one tasklet
execution is handled as one chunk processing.

This point also appears in org.springframework.batch.core.step.tasklet.Tasklet
interface.

public interface Tasklet {
 RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception;
}

6.2.2.1.1. Exception handling with ChunkListener interface

Implement afterChunkError method of ChunkListener interface.
Get error information from ChunkContext argument of afterChunkError method using
ChunkListener.ROLLBACK_EXCEPTION_KEYas a key.

For details on how to set the listener,please refer Listerner setting.

6.2. Exception handling | 351

Implementation example of ChunkListener

@Component
public class ChunkAroundListener implements ChunkListener {

 private static final Logger logger =
 LoggerFactory.getLogger(ChunkAroundListener.class);

 @Override
 public void beforeChunk(ChunkContext context) {
 logger.info("before chunk. [context:{}]", context);
 }

 @Override
 public void afterChunk(ChunkContext context) {
 logger.info("after chunk. [context:{}]", context);
 }

 // (1)
 @Override
 public void afterChunkError(ChunkContext context) {
 logger.error("Exception occurred while chunk. [context:{}]", context,
 context.getAttribute(ChunkListener.ROLLBACK_EXCEPTION_KEY)); // (2)
 }
}

Description

Sr.No. Description

(1) Implement afterChunkError method.

(2) Get error information from ChunkContext using ChunkListener.ROLLBACK_EXCEPTION_KEY as
a key.
In this example, the stack trace of the acquired exception is logged.

Difference in behavior of ChunkListener due to difference in processing model

In the chunk model, handling is not performed by the afterChunkError method
because exceptions caused by opening / closing resources are outside the scope
captured by the ChunkListener interface. A schematic diagram is shown below.

352 | 6.2. Exception handling

Schematic diagram of exception handling in chunk model

In the tasklet model, exceptions caused by opening and closing resources are
handled by the afterChunkError method because they are within the scope
captured by the ChunkListener interface. A schematic diagram is shown below.

6.2. Exception handling | 353

Schematic diagram of exception handling in the tasklet model

If you wish to handle exceptions unifiedly by absorbing this behavior difference, it
can be implemented by checking the occurrence of an exception in the
StepExecutionListener interface. However, the implementation is slightly more
complicated than ChunkListener.

354 | 6.2. Exception handling

Example of StepExecutionListener implementation.

@Component
public class StepErrorLoggingListener implements StepExecutionListener
{

 private static final Logger logger =
 LoggerFactory.getLogger(StepErrorLoggingListener.class);

 @Override
 public void beforeStep(StepExecution stepExecution) {
 // do nothing.
 }

 // (1)
 @Override
 public ExitStatus afterStep(StepExecution stepExecution) {
 // (2)
 List<Throwable> exceptions = stepExecution.
getFailureExceptions();
 // (3)
 if (exceptions.isEmpty()) {
 return ExitStatus.COMPLETED;
 }

 // (4)
 logger.info("This step has occurred some exceptions as follow.
" +
 "[step-name:{}] [size:{}]",
 stepExecution.getStepName(), exceptions.size());
 for (Throwable th : exceptions) {
 logger.error("exception has occurred in job.", th);
 }
 return ExitStatus.FAILED;
 }

Description

Sr.No. Description

(1) Implement afterStep method.

(2) Get error information from the stepExecution argument.Be aware that
you need to handle multiple exceptions together.

(3) When the error information does not exist, it is determined as normal
termination.

(4) When the error information exists, exception handling is performed.
In this example, log output with stack trace is done for all exceptions that
has occurred.

6.2. Exception handling | 355

6.2.2.1.2. Exception handling in chunk model

In the chunk model, exception handling is done with an inherited Listener StepListener.

For details on how to set listener, please refer Listener setting.

Coding point(ItemReader)

By implementing onReadError method of ItemReadListener interface, exceptions raised within
ItemReader are handled.

Implementation example of ItemReadListener#onReadError

@Component
public class CommonItemReadListener implements ItemReadListener<Object> {

 private static final Logger logger =
 LoggerFactory.getLogger(CommonItemReadListener.class);

 // omitted.

 // (1)
 @Override
 public void onReadError(Exception ex) {
 logger.error("Exception occurred while reading.", ex); // (2)
 }

 // omitted.
}

Description

Sr.No. Description

(1) Implement onReadError method.

(2) Implement exception handling.
In this example, the stack trace of the exception acquired from the argument is logged.

Coding point (ItemProcessor)

There are two ways to handle exception in ItemProcessor, and use it according to requirements.

1. How to try ~ catch in ItemProcessor

2. Using ItemProcessListener interface.

Why they are used properly is explained.
The argument of the onProcessError method executed when an exception occurs in ItemProcessor
processing consists of two items - items to be processed and exceptions to be processed.
Depending on the requirements of the system, when handling exceptions such as log output in the
ItemProcessListener interface, these two arguments may not satisfy the requirement. In that case, it

356 | 6.2. Exception handling

is recommended to catch the exception with try ~ catch in ItemProcessor and perform exception
handling processing.
Note that implementing try ~ catch in ItemProcessor and implementing the ItemProcessListener
interface may result in double processing, so care must be taken.
If fine-grained exception handling is to be done, then adopt a method to try ~ catch in
ItemProcessor.

Each method is explained below.

How to try ~ catch in ItemProcessor

This is used to do fine-grained exception handling.
As explained in the skip section below,it will be used when doing error record of Skip.

Implementation example of try ~ catch in ItemProcessor

@Component
public class AmountCheckProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPerformanceDetail> {

 // omitted.

 @Override
 public SalesPerformanceDetail process(SalesPerformanceDetail item)
 throws Exception {
 // (1)
 try {
 checkAmount(item.getAmount(), amountLimit);
 } catch (ArithmeticException ae) {
 // (2)
 logger.error(
 "Exception occurred while processing. [item:{}]", item, ae);
 // (3)
 throw new IllegalStateException("check error at processor.", ae);
 }
 return item;
 }
}

Description

Sr.No. Description

(1) Implement try ~ catch. Here special handling is only for certain exceptions
(ArithmeticException).

(2) Implement exception handling.
In this example, the stack trace of the exception acquired from the argument is logged.

(3) Throw a transaction rollback exception.
This exception throw also allows common exception handling with ItemProcessListener.

6.2. Exception handling | 357

How to use the ItemProcessListener interface

Use this,if business exceptions can be handled in the same way.

Implemenation example of ItemProcessListener#onProcessError

@Component
public class CommonItemProcessListener implements ItemProcessListener<Object, Object>
{

 private static final Logger logger =
 LoggerFactory.getLogger(CommonItemProcessListener.class);

 // omitted.

 // (1)
 @Override
 public void onProcessError(Object item, Exception e) {
 // (2)
 logger.error("Exception occurred while processing. [item:{}]", item, e);
 }

 // omitted.
}

Description

Sr.No. Description

(1) Implement onProcessError method.

(2) Implement exception handling.
In this example, the processing target data acquired from the arguments and the stack
trace of the exception are logged.

Coding point(ItemWriter)

By implementing the onWriteError method of ItemWriteListener interface exceptions raised within
ItemWriter are handled.

358 | 6.2. Exception handling

Implementation example of ItemWriteListener#onWriteError

@Component
public class CommonItemWriteListener implements ItemWriteListener<Object> {

 private static final Logger logger =
 LoggerFactory.getLogger(CommonItemWriteListener.class);

 // omitted.

 // (1)
 @Override
 public void onWriteError(Exception ex, List item) {
 // (2)
 logger.error("Exception occurred while processing. [items:{}]", item, ex);
 }

 // omitted.
}

Description

Sr.No. Description

(1) Implement onWriteError method.

(2) Implement exception handling.
In this example, the chunk of the output target obtained from the argument and the
stack trace of the exception are logged.

6.2.2.1.3. Exception handling in tasklet model

Implement exception handling of tasklet model on its own in tasklet.

When performing transaction processing, be sure to throw the exception again in order to roll
back.

6.2. Exception handling | 359

Exception handling implementation example in tasklet model

@Component
public class SalesPerformanceTasklet implements Tasklet {

 private static final Logger logger =
 LoggerFactory.getLogger(SalesPerformanceTasklet.class);

 // omitted.

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 // (1)
 try {
 reader.open(chunkContext.getStepContext().getStepExecution()
 .getExecutionContext());

 List<SalesPerformanceDetail> items = new ArrayList<>(10);
 SalesPerformanceDetail item = null;
 do {
 // Pseudo operation of ItemReader
 // omitted.

 // Pseudo operation of ItemProcessor
 checkAmount(item.getAmount(), amountLimit);

 // Pseudo operation of ItemWriter
 // omitted.

 } while (item != null);
 } catch (Exception e) {
 logger.error("exception in tasklet.", e); // (2)
 throw e; // (3)
 } finally {
 try {
 reader.close();
 } catch (Exception e) {
 // do nothing.
 }
 }

 return RepeatStatus.FINISHED;
 }
}

Description

360 | 6.2. Exception handling

Sr.No. Description

(1) Implement try-catch

(2) Implement exception handling.
In this example, the stack trace of the exception that occurred is logged.

(3) Throw the exception again to roll back the transaction.

6.2.2.2. Job-level exception handling

Exception handling method on a job level is explained.
It is a common handling method for chunk model and tasklet model.

Implement errors such as system exception and fatal error etc. in job level JobExecutionListener
interface.

In order to collectively define exception handling processing, handling is performed on a job level
without defining handling processing for each step.
In the exception handling here, do output log and setting ExitCode, do not implement transaction
processing.

Prohibition of transaction processing

The processing performed by JobExecutionListener is out of the scope of business
transaction management. Therefore, it is prohibited to execute transaction
processing in exception handling on a job level.

Here, an example of handling an exception when occurs in ItemProcessor is shown. For details on
how to set the listener,please refer Listener setting.

6.2. Exception handling | 361

Implementation example of ItemProcessor

@Component
public class AmountCheckProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPerformanceDetail> {

 // omitted.

 private StepExecution stepExecution;

 // (1)
 @BeforeStep
 public void beforeStep(StepExecution stepExecution) {
 this.stepExecution = stepExecution;
 }

 @Override
 public SalesPerformanceDetail process(SalesPerformanceDetail item)
 throws Exception {
 // (2)
 try {
 checkAmount(item.getAmount(), amountLimit);
 } catch (ArithmeticException ae) {
 // (3)
 stepExecution.getExecutionContext().put("ERROR_ITEM", item);
 // (4)
 throw new IllegalStateException("check error at processor.", ae);
 }
 return item;
 }
}

362 | 6.2. Exception handling

Exception handling implementation in JobExecutionListener

@Component
public class JobErrorLoggingListener implements JobExecutionListener {

 private static final Logger logger =
 LoggerFactory.getLogger(JobErrorLoggingListener.class);

 @Override
 public void beforeJob(JobExecution jobExecution) {
 // do nothing.
 }

 // (5)
 @Override
 public void afterJob(JobExecution jobExecution) {

 // whole job execution
 List<Throwable> exceptions = jobExecution.getAllFailureExceptions(); // (6)
 // (7)
 if (exceptions.isEmpty()) {
 return;
 }
 // (8)
 logger.info("This job has occurred some exceptions as follow. " +
 "[job-name:{}] [size:{}]",
 jobExecution.getJobInstance().getJobName(), exceptions.size());
 for (Throwable th : exceptions) {
 logger.error("exception has occurred in job.", th);
 }
 // (9)
 for (StepExecution stepExecution : jobExecution.getStepExecutions()) {
 Object errorItem = stepExecution.getExecutionContext()
 .get("ERROR_ITEM"); // (10)
 if (errorItem != null) {
 logger.error("detected error on this item processing. " +
 "[step:{}] [item:{}]", stepExecution.getStepName(),
 errorItem);
 }
 }

 }
}

Description

Sr.No. Description

(1) In order to output error data with JobExecutionListener, get the StepExecution instance
before step execution.

6.2. Exception handling | 363

Sr.No. Description

(2) Implement try-catch.

(3) Implement exception handling.
In this example, error data is stored in the context of the StepExecution instance with the
key ERROR_ITEM.

(4) Throw an exception to do exception handling with JobExecutionListener.

(5) Implement exception handling in afterJob method.

(6) Fetch error information which have occurred in all the jobs, from the argument of
jobExecution.

(7) If there is no error information, it is determined as normal termination.

(8) If there is error information, exception handling is performed.
In this example, log output with stack trace is done for all exceptions that occurred.

(9) In this example, log output is performed when error data exists.
Get the StepExecution instance from all the steps defined in the job and check whether
the error data is stored with the key ERROR_ITEM. If it is stored, it is logged as error data.

Object to be stored in ExecutionContext

The object to be stored in ExecutionContext must be a class that implements
java.io.Serializable. This is because ExecutionContext is stored in JobRepository.

6.2.2.3. Determination as to whether processing can be continued

How to decide whether or not to continue processing jobs when an exception occurs is explained.

Process continuation propriety method list

• Skip

• Retry

• Process interruption

6.2.2.3.1. Skip

A method of skipping an erroneous record and continuing processing is described.

Chunk model

In the chunk model, the implementation method differs for components of each processing

Always read About reason why <skippable-exception-classes> is not used before
applying the contents described here.

• Skip with ItemReader

• Skip with ItemProcessor

• Skip with ItemWriter

364 | 6.2. Exception handling

Skip with ItemReader

Specify the skip method in skip-policy attribute of <batch:chunk>. In <batch:skippable-exception-
classes>, specify the exception class to be skipped which occurs in the ItemReader.
For the skip-policy attribute, use one of the following classes provided by Spring Batch.

skip-policy list

Class name Description

AlwaysSkipItemSkipPolicy Always skip.

NeverSkipItemSkipPolicy Do not skip.

LimitCheckingItemSkipPolicy Skip until the upper limit of the specified number of skips
is reached.
When the upper limit value is reached, the following
exception occurs.
org.springframework.batch.core.step.skip.SkipLimitExceed
edException

This is the skipping method used by default when skip-
policy is omitted.

ExceptionClassifierSkipPolicy Use this when you want to change skip-policy which
applies to each exception.

Implementation example of skipping is explained.

Handle case where an incorrect record exists when reading a CSV file with FlatFileItemReader.
The following exceptions occur at this time.

• org.springframework.batch.item.ItemReaderException(Base exception class)

◦ org.springframework.batch.item.file.FlatFileParseException (Exception occured class)

skip-policy shows how to define it separately.

6.2. Exception handling | 365

Definition of ItemReader as a prerequisite

<bean id="detailCSVReader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step">
 <property name="resource" value="file:#{jobParameters['inputFile']}"/>
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="branchId,year,month,customerId,amount"/>
 </property>
 <property name="fieldSetMapper">
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerforman
ceDetail"/>
 </property>
 </bean>
 </property>
</bean>

AlwaysSkipItemSkipPolicy

Specification example of AlwaysSkipItemSkipPolicy

<!-- (1) -->
<bean id="skipPolicy"
 class="org.springframework.batch.core.step.skip.AlwaysSkipItemSkipPolicy"/>

<batch:job id="jobSalesPerfAtSkipAllReadError" job-repository="jobRepository">
 <batch:step id="jobSalesPerfAtSkipAllReadError.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"
 skip-policy="skipPolicy"> <!-- (2) -->
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) Define AlwaysSkipItemSkipPolicy as a bean.

(2) Set the bean defined in (1) to the skip-policy attribute of <batch:chunk>

366 | 6.2. Exception handling

NeverSkipItemSkipPolicy

Specification example of NeverSkipItemSkipPolicy

<!-- (1) -->
<bean id="skipPolicy"
 class="org.springframework.batch.core.step.skip.NeverSkipItemSkipPolicy"/>

<batch:job id="jobSalesPerfAtSkipNeverReadError" job-repository="jobRepository">
 <batch:step id="jobSalesPerfAtSkipNeverReadError.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"
 skip-policy="skipPolicy"> <!-- (2) -->
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) Define NeverSkipItemSkipPolicyas a bean.

(2) Set the bean defined in (1) to the skip-policy attribute of <batch:chunk>.

LimitCheckingItemSkipPolicy

6.2. Exception handling | 367

Specification example of LimitCheckingItemSkipPolicy

(1)
<!--
<bean id="skipPolicy"
 class="org.springframework.batch.core.step.skip.LimitCheckingItemSkipPolicy"/>
-->

<batch:job id="jobSalesPerfAtValidSkipReadError" job-repository="jobRepository">
 <batch:step id="jobSalesPerfAtValidSkipReadError.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"
 skip-limit="2"> <!-- (2) -->
 <!-- (3) -->
 <batch:skippable-exception-classes>
 <!-- (4) -->
 <batch:include
 class="org.springframework.batch.item.ItemReaderException"/>
 </batch:skippable-exception-classes>
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) Define LimitCheckingItemSkipPolicy as a bean.
The skip-policy attribute is omitted by default, so it does not have to be defined.

(2) Set the upper limit value of skip count in the skip-limit attribute of <batch:chunk>.
The skip-policy attribute is omitted by default.

(3) Define <batch:skippable-exception-classes> and set the targetted exception in the tag.

(4) Set ItemReaderException as a skip target class.

ExceptionClassifierSkipPolicy

368 | 6.2. Exception handling

ExceptionClassifierSkipPolicy specification example

<!-- (1) -->
<bean id="skipPolicy"
 class="org.springframework.batch.core.step.skip.ExceptionClassifierSkipPolicy">
 <property name="policyMap">
 <map>
 <!-- (2) -->
 <entry key="org.springframework.batch.item.ItemReaderException"
 value-ref="alwaysSkip"/>
 </map>
 </property>
</bean>
<!-- (3) -->
<bean id="alwaysSkip"
 class="org.springframework.batch.core.step.skip.AlwaysSkipItemSkipPolicy"/>

<batch:job id="jobSalesPerfAtValidNolimitSkipReadError"
 job-repository="jobRepository">
 <batch:step id="jobSalesPerfAtValidNolimitSkipReadError.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <!-- skip-limit value is dummy. -->
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"
 skip-policy="skipPolicy"> <!-- (4) -->
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) Define ExceptionClassifierSkipPolicy as a bean.

(2) Set the policyMap property to a map whose key is an exception class and whose value is
skipped.
In this example, when ItemReaderException occurs, it is set to be the skip method defined
in (3).

(3) Define the skipping method you want to execute by exception.
In this example, AlwaysSkipItemSkipPolicy is defined.

(4) Set the bean defined in (1) to the skip-policy attribute of <batch:chunk>.

Skip on ItemProcessor

Try ~ catch in ItemProcessor and return null.
Skip with skip-policy is not used because reprocessing occurs in ItemProcessor. For details,
please refer About reason why <skippable-exception-classes> is not used.

6.2. Exception handling | 369

Restrictions on exception handling in ItemProcessor

As in About reason why <skippable-exception-classes> is not used, In
ItemProcessor, skipping using <batch:skippable-exception-classes> is forbidden.
Therefore,cannot skip applying "How to use the ItemProcessListener interface."
explained in Coding point (ItemProcessor).

Implementation example of skip.

Implementation example of try~catch in ItemProcessor of Coding point (ItemProcessor) correspond
to skip.

try~catch example in ItemProcessor

@Component
public class AmountCheckProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPerformanceDetail> {

 // omitted.

 @Override
 public SalesPerformanceDetail process(SalesPerformanceDetail item) throws
Exception {
 // (1)
 try {
 checkAmount(item.getAmount(), amountLimit);
 } catch (ArithmeticException ae) {
 logger.warn("Exception occurred while processing. Skipped. [item:{}]",
 item, ae); // (2)
 return null; // (3)
 }
 return item;
 }
}

Description

Sr.No. Description

(1) Implement try~catch

(2) Implement exception handling
In this example, the stack trace of the exception acquired from the argument is logged.

(3) Skip error data by returning null.

Skip with ItemWriter

In ItemWriter skip processing is not done generally.
Even when skipping is necessary, skipping by skip-policy will not be used as the chunk size will
change. For details, please refer About reason why <skippable-exception-classes> is not used.

370 | 6.2. Exception handling

Tasket model

Handle exceptions in business logic and implement processing to skip error records independently.

Implementation example of Exception handling in tasklet model corresponds to skip.

6.2. Exception handling | 371

Implementation example with tasklet model

@Component
public class SalesPerformanceTasklet implements Tasklet {

 private static final Logger logger =
 LoggerFactory.getLogger(SalesPerformanceTasklet.class);

 // omitted.

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 // (1)
 try {
 reader.open(chunkContext.getStepContext().getStepExecution()
 .getExecutionContext());

 List<SalesPerformanceDetail> items = new ArrayList<>(10);
 SalesPerformanceDetail item = null;
 do {
 // Pseudo operation of ItemReader
 // omitted.

 // Pseudo operation of ItemProcessor
 checkAmount(item.getAmount(), amountLimit);

 // Pseudo operation of ItemWriter
 // omitted.

 } while (item != null);
 } catch (Exception e) {
 logger.warn("exception in tasklet. Skipped.", e); // (2)
 continue; // (3)
 } finally {
 try {
 reader.close();
 } catch (Exception e) {
 // do nothing.
 }
 }

 return RepeatStatus.FINISHED;
 }
}

Description

372 | 6.2. Exception handling

Sr.No. Description

(1) Implement try-catch

(2) Implement exception handling.
In this example, the stack trace of the exception that occurred is logged.

(3) Processing of error data is skipped by continue.

6.2.2.3.2. Retry

When an exception is detected, a method of reprocessing until the specified number of times is
reached is described.

For retry, it is necessary to consider various factors such as the presence or absence of state
management and the situation where retry occurs, there is no reliable method, and retrying it
unnecessarily deteriorates the situation.

Therefore, this guideline explains how to use org.springframework.retry.support.RetryTemplate
which implements a local retry.

As with skipping method, a method which specifies the target exception class with
<retryable-exception-classes> can also be listed. However, as with About reason
why <skippable-exception-classes> is not used There is a side effect that causes
performance degradation, so TERASOLUNA Batch 5.x does not use it.

6.2. Exception handling | 373

RetryTemplate Implementation code

public class RetryableAmountCheckProcessor implements
 ItemProcessor<SalesPerformanceDetail, SalesPerformanceDetail> {

 // omitted.

 // (1)
 private RetryPolicy retryPolicy;

 @Override
 public SalesPerformanceDetail process(SalesPerformanceDetail item)
 throws Exception {

 // (2)
 RetryTemplate rt = new RetryTemplate();
 if (retryPolicy != null) {
 rt.setRetryPolicy(retryPolicy);
 }

 try {
 // (3)
 rt.execute(new RetryCallback<SalesPerformanceDetail, Exception>() {
 @Override
 public SalesPerformanceDetail doWithRetry(RetryContext context) throws
Exception {
 logger.info("execute with retry. [retry-count:{}]", context
.getRetryCount());
 // retry mocking
 if (context.getRetryCount() == adjustTimes) {
 item.setAmount(item.getAmount().divide(new BigDecimal(10)));
 }
 checkAmount(item.getAmount(), amountLimit);
 return null;
 }
 });
 } catch (ArithmeticException ae) {
 // (4)
 throw new IllegalStateException("check error at processor.", ae);
 }
 return item;
 }

 public void setRetryPolicy(RetryPolicy retryPolicy) {
 this.retryPolicy = retryPolicy;
 }
}

374 | 6.2. Exception handling

Bean definition

<!-- omitted -->

<bean id="amountCheckProcessor"

class="org.terasoluna.batch.functionaltest.ch06.exceptionhandling.RetryableAmountCheck
Processor"
 scope="step"
 p:retryPolicy-ref="retryPolicy"/> <!-- (5) -->

<!-- (6) (7) (8)-->
<bean id="retryPolicy" class="org.springframework.retry.policy.SimpleRetryPolicy"
 c:maxAttempts="3"
 c:retryableExceptions-ref="exceptionMap"/>

<!-- (9) -->
<util:map id="exceptionMap">
 <entry key="java.lang.ArithmeticException" value="true"/>
</util:map>

<batch:job id="jobSalesPerfWithRetryPolicy" job-repository="jobRepository">
 <batch:step id="jobSalesPerfWithRetryPolicy.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) Store the retry condition.

(2) Create an instance of RetryTemplate.
The default retry count = 3, all exceptions are subject to retry.

(3) Use the RetryTemplate#execute method to execute the business logic you wish to retry.
Execute only the part that you want to retry with the RetryTemplate#execute method, not
the entire business logic.

(4) Exception handling when the number of retries exceeds the specified number of times
The exception that occurs in the business logic is thrown as it is.

(5) Specify the retry condition defined in (6).

(6) Define the retry condition in the class that implements
org.springframework.retry.RetryPolicy.
In this example, we use SimpleRetryPolicy which is provided by Spring Batch.

6.2. Exception handling | 375

Sr.No. Description

(7) Specify the number of retries in the maxAttempts constructor argument.

(8) Specify the map that defines the target exception to be retried defined in (9) in
retryableExceptions of the constructor argument.

(9) Define a map wherein exception class to be retried is set in key and truth value is set in
value.
If the boolean value is true, target exception is retried.

6.2.2.3.3. Process interruption

If you want to abort step execution, throw RuntimeException or its subclass other than skip / retry
object.

Implementation example of skip is shown based on
[Ch06_ExceptionHandling_HowToUse_ContinuationPropriety_Skip_Chunk_LimitCheckingItemSkipP
olicy]

Bean definition

<batch:job id="jobSalesPerfAtValidSkipReadError" job-repository="jobRepository">
 <batch:step id="jobSalesPerfAtValidSkipReadError.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"
 skip-limit="2">
 <batch:skippable-exception-classes>
 <!-- (1) -->
 <batch:include
class="org.springframework.batch.item.validator.ValidationException"/>
 </batch:skippable-exception-classes>
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) If an exception other than ValidationException occurs, processing is interrupted.

An implementation example of retry is shown based on Retry.

376 | 6.2. Exception handling

Bean definition

<!-- omitted -->

<bean id="retryPolicy" class="org.springframework.retry.policy.SimpleRetryPolicy"
 c:maxAttempts="3"
 c:retryableExceptions-ref="exceptionMap"/>

<util:map id="exceptionMap">
 <!-- (1) -->
 <entry key="java.lang.UnsupportedOperationException" value="true"/>
</util:map>

<batch:job id="jobSalesPerfWithRetryPolicy" job-repository="jobRepository">
 <batch:step id="jobSalesPerfWithRetryPolicy.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="detailCSVReader"
 processor="amountCheckProcessor"
 writer="detailWriter" commit-interval="10"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

Description

Sr.No. Description

(1) If an exception other than UnsupportedOperationException occurs, processing is
interrupted.

6.2.3. Appendix

6.2.3.1. About reason why <skippable-exception-classes> is not used

Spring Batch provides a function to specify an exception to be skipped for the entire job, skip
processing the item where the exception occurred, and continue the processing.

It implements the function by setting the <skippable-exception-classes> tag under the <chunk> tag
and specifying the exception to be skipped as follows.

6.2. Exception handling | 377

Usage example of <skippable-exception-classes>

<job id="flowJob">
 <step id="retryStep">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter"
 processor="itemProcessor" commit-interval="20"
 skip-limit="10">
 <skippable-exception-classes>
 <!-- specify exceptions to the skipped -->
 <include class="java.lang.Exception"/>
 <exclude class="java.lang.NullPointerException"/>
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

By using this function, it is possible to skip the record where the input check error has occurred
and continue processing the subsequent data. For TERASOLUNA Batch 5.x, it is not used for the
following reasons.

• If an exception is skipped using the <skippable-exception-classes> tag, since the number of data
items included in one chunk varies, performance deterioration may occur.

◦ This depends on where the exception occurred (ItemReader / ItemProcessor / ItemWriter).
Details are described later.

Avoid using SkipPolicy without defining <skippable-exception-classes>

All exceptions are implicitly registered, and the possibility of performance
degradation increases dramatically.

The behavior of each exception occurrence (ItemReader / ItemProcessor / ItemWriter) is explained
respectively.
The transaction operation is not processed regardless of where the exception occurred, but if an
exception occurs, it is always rolled back and then processed again.

When an exception occurs in ItemReader

• When an exception occurs in the process of ItemReader, the processing object moves to the
next item.

• There are no side effects.

When an exception occurs in ItemProcessor

• If an exception occurs within the processing of ItemProcessor, return to the beginning of the
chunk and reprocess from the first.

• Items to be skipped for reprocessing are not included.

• The chunk size at the first processing and reprocessing does not change.

378 | 6.2. Exception handling

When an exception occurs in ItemWriter

• If an exception occurs within the processing of ItemWriter, return to the beginning of the
chunk and reprocess from the first.

• Reprocessing is fixed to ChunkSize=1 and executed one by one.

• Items to be skipped for reprocessing are also included.

If an exception occurs in ItemProcessor, considering the case of ChunkSize=1000 as an example, when
an exception occurs on the 1000th case, reprocessing is done from the 1st and total of 1999
processes are executed.

If an exception occurs in ItemWriter, ChunkSize=1 is fixed and reprocessed. Considering the case of
ChunkSize = 1000 as an example, it is divided into 1000 transactions regardless of originally 1
transaction and processed.

This means that the processing time of the entire job is prolonged, and the situation is highly likely
to deteriorate at the time of abnormality. In addition, the double treatment can become a problem,
and additional considerations must be employed for design manufacturing.

Therefore, we do not recommend using <skippable-exception-classes>. Skipping data that failed in
ItemReader does not cause these problems, in order to prevent accidents, basically avoid it and
apply it only when it is absolutely necessary.

6.2. Exception handling | 379

6.3. Restart processing

6.3.1. Overview

A method to recover by restarting the job is explained when the job is abnormally terminated due
to occurrence of failure.

Since this function is used differently for chunk model and tasklet model, each will be explained
respectively.

There are the following methods to restart a job.

1. Job rerun

2. Job restart

◦ Stateless restart

▪ Number based restart

◦ Stateful restart

▪ Determine processing status, restart process to extract unprocessed data

▪ It is necessary to separately implement a process for identifying the processing state

Below is terminology definition:

Rerun

Redoing the job from the beginning.
As a preliminary work, it is necessary to recover the state before failure occurrence such as
initializing data, at the time of starting the job.

Restart

Resume the processing from where the job was interrupted.
It is necessary to design/implement retention of restart position processing, acquisition method,
data skip method till restart position etc in advance.
There are two types of restart, stateless and stateful.

Stateless restart

A restart method not considering the state (unprocessed / processed) for each input data.

Number based restart

One of stateless restart.
A method of retaining the processed input data count and skipping that input data at the time of
restart.
If the output is a non-transactional resource, it is also necessary to hold the output position and
move the write position to that position at the time of restart.

Stateful restart

A restart method in which the state (unprocessed / processed) for each input data is judged, and
only unprocessed data is acquired as an acquisition condition.

380 | 6.3. Restart processing

If the output is a non-transactional resource, make the resource additional, and at the time of
restart, add it to the previous result.

Generally rerun is the easiest way to re-execute. With Rerun < Stateless restart < Stateful restart
order, it becomes difficult to design and implement. Of course, it is always preferable to use rerun if
possible, For each job that the user implements, please consider which method to apply depending
on the allowable batch window and processing characteristics.

6.3.2. How to use

Implementation method of Rerun and restart is explained.

6.3.2.1. Job rerun

How to implement job rerun is explained.

1. Preliminary work of data recovery such as initialization of data before re-run is carried out.

2. Execute the failed job again with the same condition (same parameter).

◦ In Spring Batch, if you execute a job with the same parameters, it will be treated as double
execution, but TERASOLUNA Batch 5.x treats it as a separate job
For details,please refer"About parameter conversion class".

6.3.2.2. Job restart

How to restart a job is explained.

When restarting a job, it is basically done on a job executed synchronously.

It is recommended that asynchronously executed jobs should be designed with a corresponding job
design with a rerun instead of a restart. This is difficult to judge whether it is "intended restart
execution" or "unintended duplicate execution", this is because there is a possibility of confusion
in operation.

If restarting requirements cannot be excluded for asynchronous job execution, the following
methods can be used to clarify "intended restart execution".

• Restart by -restart of CommandLineJobRunner

◦ Restart asynchronously executed job separately from synchronous execution. It becomes
effective when progressing the recovery process sequentially.

• Restart by JobOperator#restart(JobExecutionId)

◦ Restart the asynchronously executed job on the mechanism of asynchronous execution
again.It is effective when progressing with recovery processing collectively.

▪ Asynchronous execution(DB polling) does not support restart. Therefore, it is necessary
to implement it separately by the user.

▪ Asynchronous execution(Web container) guides how to implement restart. User
implements it according to this description.

6.3. Restart processing | 381

About restart when there is input check

The input check error is not recoverable unless the input resource causing the
check error is corrected. For reference, an input resource example at the time of
input error occurrence is shown below.

1. When an input check error occurs, log output is performed so that the target
data can be specified.

2. Based on the output log information, correct the input data.

◦ Make sure that the order of input data does not change.

◦ Correction method differs according to generation method of input
resource.

▪ Correct manually

▪ Recreate with job etc

▪ Retransmission from collaboration source

3. Deploy corrected input data and execute restart.

In the case of multiple processing (Partition Step)

When restarting in "multiple processing(Partition Step)", processing is carried out
again from split processing. When all of the data are processed as the result of
dividing the data, unnecessary splitting is performed and recorded on
JobRepository, there is no problem such as data inconsistency caused by this.

6.3.2.3. Stateless restart

How to implement stateless restart is explained.

Stateless restart with TERASOLUNA Batch 5.x refers to a number based restart.This is implemented
by using the mechanism of Spring Batch.
The number based restart can be used in job execution of chunk model. In addition, the number
based restart uses context information about inputs and outputs registered in JobRepository.
Therefore, in a number based restart, it is assumed that JobRepository does not use the in-memory
database, but uses the database which are guaranteed to be persistent.

About failure occurence of JobRepository

Updating to JobRepository is done in transactions that are independent of
transactions of the database used by the business process.
In other words, only the failure to the business process is subject to recovery.
This means that if a failure occurs in JobRepository, there is a possibility that it will
deviate from the actual count of processes, it means that there is a danger of
double processing at restart.
Therefore, it is necessary to consider how to deal with failure. For example, design
availability of JobRepository higher, then review rerun’s method in advance, and
so on.

382 | 6.3. Restart processing

Input at restart

Since most of the ItemReaders provided by Spring Batch are compatible with the number-based
restart, special support is not necessary.
If you want to create a number based restartable ItemReader yourself, the following abstract
classes can be extended that have restart processing implemented.

• org.springframework.batch.item.support.AbstractItemCountingItemStreamItemReader

The number-based restart is not able to detect the change / addition / deletion of input data since
restart starting point is determined based on the number. Often the input data is corrected for
the recovery after terminating the job abnormally. However, when data is changed this way, it
must be noted that the variation occurs between the output of results for normal job
termination, and the results of recovery by restarting abnormal job termination.

• Change the data acquisition order

◦ At the time of restart, duplicate or unprocessed data will get generated, so it should
not be attempted as it results in a different recovery result from the result of rerun.

• Update processed data

◦ Since the data updated at the time of restarting is skipped, it is not preferred as there
are cases where rerun result and the recovered result by restart result changes.

• Update or add unprocessed data

◦ It is allowed as rerun results and recovered result are same. However, it is different
from the result of the normal termination in the first execution. This should be used
when patching abnormal data in an emergency coping manner or when processing as
much as possible data received at the time of execution.

Output at restart

Care must be taken for output to non-transactional resources. For example in a file, it is
necessary to grasp the position to which the output was made and output from that position.
Since the FlatFileItemWriter provided by Spring Batch gets the previous output position from
the context and outputs from that position at the time of restart, special countermeasure is
unnecessary.
For transactional resources, since rollback is performed at the time of failure, it is possible to
perform processing without taking any special action at restart.

If the above conditions are satisfied, add the option -restart to the failed job and execute it again.
An example of job restart is shown below.

Restart example of synchronous job

(1)
java -cp dependency/*
org.springframework.batch.core.launch.support.CommandLineJobRunner <jobPath> <jobName>
-restart

Description

6.3. Restart processing | 383

Sr.No. Description

(1) Specify job bean path and job name same as job failed at CommandLineJobRunner, add
-restartand execute it.
Since job parameters are restored from JobRepository, it is not necessary to specify them.

An example of restarting a job executed in asynchronous execution (DB polling) is shown below.

Restart example of job executed in asynchronous execution (DB polling)

(1)
java -cp dependency/*
org.springframework.batch.core.launch.support.CommandLineJobRunner <JobExecutionId>
-restart

Description

Sr.No. Description

(1) Run CommandLineJobRunner by specifying the same job execution ID (JobExecutionId) as
the failed job and adding -restart.
Since job parameters are restored from JobRepository, it is not necessary to specify them.

The job execution ID can be acquired from the job-request-table. About the job-request-
table, please refer "About polling table".

Output log of job execution ID

In order to promptly specify the job execution ID of the abnormally terminated
job, it is recommended to implement a listener or exception handling class that
logs the job execution ID when the job ends or when an exception occurs.

An example of restart in asynchronous execution (Web container) is shown below.

Examples of restarting jobs executed in asynchronous execution (web container)

public long restart(long JobExecutionId) throws Execption {
 return jobOperator.restart(JobExecutionId); // (1)
}

Description

Sr.No. Description

(1) Specify the same job execution ID (JobExecutionId) as the failed job to JobOperator and
execute it with restart method.
Job parameters are restored from JobRepository.

The job execution ID can be obtained from the ID acquired when executing the job with
the web application or from JobRepository. For acquisition method, please refer "Job
status management".

384 | 6.3. Restart processing

6.3.2.4. Stateful restart

How to achieve stateful restart is explained.

Stateful restart is a method of reprocessing by acquiring only unprocessed data together with
input/output results at the time of execution. Although this method is difficult to design such as
state retaining / determination unprocessed etc, it is sometimes used because it has a strong
characteristic in data change.

In stateful restart, since restart conditions are determined from input / output resources,
persistence of JobRepository becomes unnecessary.

Input at restart

Prepare an ItemReader that implements logic that acquires only unprocessed data with input /
output results.

Output at restart

Similar to Stateless restart caution is required for output to non-transactional resource.
In the case of a file, assuming that the context is not used, it is necessary to design such that file
addition is permitted.

Stateful restart,similar to Job rerun reruns the job with the same condition as with the failed job.
Unlike stateless restart, -restart option is not used.

An example of implementing an easy stateful restart is shown below.

Processing specification

1. Define a processed column in the input target table, and update it with a value other than NULL
if the processing succeeds.

◦ For the extraction condition of unprocessed data, the value of the processed column is
NULL.

2. Output the processing result to a file.

6.3. Restart processing | 385

RestartOnConditionRepository.xml

<!-- (1) -->
<select id="findByProcessedIsNull"

resultType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail">
 <![CDATA[
 SELECT
 branch_id AS branchId, year, month, customer_id AS customerId, amount
 FROM
 sales_plan_detail
 WHERE
 processed IS NULL
 ORDER BY
 branch_id ASC, year ASC, month ASC, customer_id ASC
]]>
</select>

<!-- (2) -->
<update id="update"
parameterType="org.terasoluna.batch.functionaltest.app.model.plan.SalesPlanDetail">
 <![CDATA[
 UPDATE
 sales_plan_detail
 SET
 processed = '1'
 WHERE
 branch_id = #{branchId}
 AND
 year = #{year}
 AND
 month = #{month}
 AND
 customer_id = #{customerId}
]]>
</update>

restartOnConditionBasisJob.xml

<!-- (3) -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.functionaltest.ch06.reprocessing.repository.RestartOnC
onditionRepository.findByZeroOrLessAmount"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

<!-- (4) -->
<bean id="dbWriter" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.functionaltest.ch06.reprocessing.repository.Restar

386 | 6.3. Restart processing

tOnConditionRepository.update"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

<bean id="fileWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:appendAllowed="true"> <!-- (5) -->
 <property name="lineAggregator">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="branchId,year,month,customerId,amount"/>
 </property>
 </bean>
 </property>
</bean>
<!-- (6) -->
<bean id="compositeWriter"
class="org.springframework.batch.item.support.CompositeItemWriter">
 <property name="delegates">
 <list>
 <ref bean="fileWriter"/>
 <ref bean="dbWriter"/>
 </list>
 </property>
</bean>

<batch:job id="restartOnConditionBasisJob"
 job-repository="jobRepository" restartable="false"> <!-- (7) -->

 <batch:step id="restartOnConditionBasisJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" processor="amountUpdateItemProcessor"
 writer="compositeWriter" commit-interval="10" />
 </batch:tasklet>
 </batch:step>

</batch:job>

Example of restart command execution

(8)
java -cp dependency/*
org.springframework.batch.core.launch.support.CommandLineJobRunner <jobPath> <jobName>
<jobParameters> ...

Description

6.3. Restart processing | 387

Sr.No. Description

(1) Define SQL so that the processed column has only NULL data.

(2) Define SQL to update processed columns with non-NULL.

(3) For ItemReader, set the SQLID defined in (1).

(4) For updating to the database, set the SQLID defined in (2).

(5) At restart,allow addition of files in order to make it possible to write from the last
interruption point.

(6) Set CompositeItemWriter to be processed in the order of file output → database update,
and set it to chunk writer.

(7) It is not mandatory, but set the restartable attribute to false so that it will get an error if
it is started accidentally with the -restart option.

(8) Execute again according to the execution condition of the failed job.

About the job’s restartable attribute

If restartableis true, as explained in Stateless restart, use the context information
to skip input / output data. When using ItemReader or ItemWriter that are
provided by Spring Batch in stateful restart, there is a possibility that this process
may stop processing as expected. Therefore, by setting restartable to false,
activation with the -restart option will result in an error, preventing malfunction.

388 | 6.3. Restart processing

Chapter 7. Job Management

7.1. Overview
Explain how to manage job execution.

This function is the same usage for chunk model and tasklet model.

7.1.1. What is Job Execution Management?

It means to record the activation state and execution result of the job and maintain the batch
system. In particular, it is important to secure necessary information in order to detect when an
abnormality has occurred and determine what action should be taken next (such as rerun / restart
after abnormal termination). Due to the characteristics of the batch application, it is rare that the
result can be confirmed on the user interface immediately after startup. Therefore, it is necessary
to have a mechanism to record execution status and results separately from job execution, such as
job scheduler / RDBMS / application log.

7.1.1.1. Functions Offered by Spring Batch

Spring Batch provides the following interface for job execution management.

List of job management functions

Function Corresponding interface

Record job execution status/result org.springframework.batch.core.repository.JobRepository

Convert job exit code and process exit
code

org.springframework.batch.core.launch.support.ExitCodeMa
pper

Spring Batch uses JobRepository for recording the job’s activation status and execution result. For
TERASOLUNA Batch 5.x, if all of the following are true, persistence is optional:

• Using TERASOLUNA Batch 5.x only for synchronous job execution.

• Managing all job execution with the job scheduler including job stop/restart.

◦ Do not use restart assuming JobRepository with Spring Batch.

When these are applicable, use H2 which is an in-memory/built-in database as an option of RDBMS
used by JobRepository.
On the other hand, when using asynchronous execution or stop/restart of Spring Batch, an RDBMS,
that can persist status/result after the job execution, is required.

7.1. Overview | 389

Default transaction isolation level

In xsd provided by Spring Batch, the transaction isolation level of JobRepository
has SERIALIZABLE as the default value. However, in this case, when multiple jobs
are executed concurrently regardless of whether it is synchronous or
asynchronous, an exception occurs in updating JobRepository. Therefore,
TERASOLUNA Batch 5.x sets the transaction isolation level of JobRepository to
READ_COMMITTED in advance.

In-memory JobRepository Options

Spring Batch has
org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean

which performs job execution management in-memory, but it is not used in this
guideline.
As shown in the Javadoc of this class, it is explained that it is for the purpose of
testing indicated as This repository is only really intended for use in testing
and rapid prototyping. and that it is inappropriate for parallel processing
indicated as Not suited for use in multi-threaded jobs with splits.

For the job execution management using job scheduler, refer to the manual of each product.
In this guideline, following items related to manage the job status using JobRepository within
TERASOLUNA Batch 5.x are explained.

Items related to state management within TERASOLUNA Batch

• Job Status Management

◦ How to persist state

◦ How to check the status

◦ How to stop the job manually

• Customizing Exit Codes

• Double Activation Prevention

• Logging

• Message Management

7.2. How to use
JobRepository automatically registers/updates the job status/execution result in RDBMS through
Spring Batch. When confirming them, select one of the following methods so that unintended
change processing is not performed from inside or outside the batch application.

• Issue a query for a table related to Job Status Management

• Use org.springframework.batch.core.explore.JobExplorer

390 | 7.2. How to use

7.2.1. Job Status Management

Explain job status management method using JobRepository.
Following entities are registered in RDBMS table, by using Spring Batch.

Entity class and table name managed by JobRepository

Sr. No. Entity class Table name Generation unit Desctiption

(1) JobExecution BATCH_JOB_EXECUTIO
N

Execution of one
job

Maintain job
status/execution result.

(2) JobExecutionContex
t

BATCH_JOB_EXECUTIO
N_CONTEXT

Execution of one
job

Maintain the context inside
the job.

(3) JobExecutionParams BATCH_JOB_EXECUTIO
N_PARAMS

Execution of one
job

Hold job parameters given
at startup.

(4) StepExecution BATCH_STEP_EXECUTI
ON

Execution of one
step

Maintain the state/execution
result of the step,
commit/rollback number.

(5) StepExecutionConte
xt

BATCH_STEP_EXECUTI
ON_CONTEXT

Execution of one
step

Maintain the context inside
the step.

(6) JobInstance BATCH_JOB_INSTANCE Combination of
job name and job
parameter

Hold job name and string
serialized job parameter.

For example, when three steps are executed with one job execution, the following difference
occurs.

• JobExecution, JobExecutionContext and JobExecutionParams register one record.

• StepExecution and StepExecutionContext register three records.

Also, JobInstance is used to suppress double execution by the same name job and same parameter
started in the past, TERASOLUNA Batch 5.x does not check this. For details, refer to Double
Activation Prevention.

The structure of each table by JobRepository is described in Architecture of Spring
Batch.

7.2. How to use | 391

About the item count of StepExecution in the chunk method

As shown below, it seems that inconsistency is occurring, but there are cases
where it is reasonable from the specification.

• The transaction issue count of StepExecution(BATCH_STEP_EXECUTION table)
sometimes does not match the number of input data counts.

◦ The number of transaction issues refers to the sum of COMMIT_COUNT and
ROLLBACK_COUNT of BATCH_STEP_EXECUTION.
However, COMMIT_COUNT becomes COMMIT_COUNT + 1 if the number of input
data is divisible by the chunk size.
This is because null representing the end is also counted as input data and
is processed empty, after reading the number of input data counts.

• The number of processing of BATCH_STEP_EXECUTION and
BATCH_STEP_EXECUTION_CONTEXT may be different.

◦ In READ_COUNT and WRITE_COUNT of BATCH_STEP_EXECUTION, the number of items
read and written by ItemReader and ItemWriter are recorded.

◦ The SHORT_CONTEXT column in the BATCH_STEP_EXECUTION_CONTEXT table
records the number of read operations by ItemReader in JSON format.
However, it does not necessarily match the number of processing by
BATCH_STEP_EXECUTION.

◦ This means that the BATCH_STEP_EXECUTION table based on the chunk method
records the number of reads and writes irrespective of success or failure,
whereas the BATCH_STEP_EXECUTION_CONTEXT table records the position to be
resumed by a restart in case of a failure in the course of processing.

7.2.1.1. Status Persistence

By using external RDBMS, job execution management information by JobRepository can be made
persistent. To enable this, change the following items in batch-application.properties to be data
sources, schema settings for external RDBMS.

batch-application.properties

(1)
Admin DataSource settings.
admin.jdbc.driver=org.postgresql.Driver
admin.jdbc.url=jdbc:postgresql://serverhost:5432/admin
admin.jdbc.username=postgres
admin.jdbc.password=postgres

(2)
spring-batch.schema.script=classpath:org/springframework/batch/core/schema-
postgresql.sql

List of setting contents (PostgreSQL)

392 | 7.2. How to use

Sr. No. Description

(1) Describe the setting of the external RDBMS to be connected as the value of the
property to which the prefix admin is attached.

(2) Specify a script file to automatically generate the schema as JobRepository at
application startup.

Supplementary to administrative/business data sources

• Connection settings to database are separately defined as management and
business data sources.
TERASOLUNA Batch 5.x separately defined, JobRepository has been set up to
use an administrative data source prefixed with admin as its property prefix.

• When using asynchronous execution (DB polling), specify the same
management data source and schema generation script in the job request
table.
For details, refer to Asynchronous Execution (DB polling).

7.2.1.2. Confirmation of job status/execution result

Explain how to check the job execution status from JobRepository
In either method, the job execution ID to be checked is known in advance.

7.2.1.2.1. Query directly

Using the RDBMS console, query directly on the table persisted by JobRepository.

SQL sample

admin=# select JOB_EXECUTION_ID, START_TIME, END_TIME, STATUS, EXIT_CODE from
BATCH_JOB_EXECUTION where JOB_EXECUTION_ID = 1;
 job_execution_id | start_time | end_time | status |
exit_code
------------------+-------------------------+-------------------------+-----------+

 1 | 2017-02-14 17:57:38.486 | 2017-02-14 18:19:45.421 | COMPLETED |
COMPLETED
(1 row)
admin=# select JOB_EXECUTION_ID, STEP_EXECUTION_ID, START_TIME, END_TIME, STATUS,
EXIT_CODE from BATCH_STEP_EXECUTION where JOB_EXECUTION_ID = 1;
 job_execution_id | step_execution_id | start_time | end_time
| status | exit_code
------------------+-------------------+-------------------------+
------------------------+-----------+-----------
 1 | 1 | 2017-02-14 17:57:38.524 | 2017-02-14 18:19:45
.41 | COMPLETED | COMPLETED
(1 row)

7.2. How to use | 393

7.2.1.2.2. Use JobExplorer

Under sharing the application context of the batch application, JobExplorer enables to confirm job
execution status by injecting it.

API code sample

// omitted.

@Inject
private JobExplorer jobExplorer;

private void monitor(long jobExecutionId) {

 // (1)
 JobExecution jobExecution = jobExplorer.getJobExecution(jobExecutionId);

 // (2)
 String jobName = jobExecution.getJobInstance().getJobName();
 Date jobStartTime = jobExecution.getStartTime();
 Date jobEndTime = jobExecution.getEndTime();
 BatchStatus jobBatchStatus = jobExecution.getStatus();
 String jobExitCode = jobExecution.getExitStatus().getExitCode();

 // omitted.

 // (3)
 for (StepExecution stepExecution : jobExecution.getStepExecutions()) {
 String stepName = stepExecution.getStepName();
 Date stepStartTime = stepExecution.getStartTime();
 Date stepEndTime = stepExecution.getEndTime();
 BatchStatus stepStatus = stepExecution.getStatus();
 String stepExitCode = stepExecution.getExitStatus().getExitCode();

 // omitted.
 }
}

List of setting contents (PostgreSQL)

Sr. No. Description

(1) Specify the job execution ID from the injected JobExplorer and get
JobExecution.

(2) Get the job execution result by JobExecution.

(3) Get a collection of steps executed within the job from JobExecution and get
individual execution result.

394 | 7.2. How to use

7.2.1.3. Stopping a Job

"Stopping a job" is a function that updates the running status of JobRepository to a stopping status
and stops jobs at the boundary of steps or at chunk commit by chunk method.
Combined with restart, processing from the stopped position can be restarted.

 For details of the restart, refer to "Job Restart".

"Stopping a job" is not a function to immediately stop a job in progress but to
update the running status of JobRepository to the stopping status.
It does not perform any kind of stop processing such as interrupting the in-process
thread immediately for the job.

Therefore, it can be said that stopping the job is "to reserve to stop when a
processing that becomes a milestone is completed, such as a chunk break". For
example, even if you stop the job under the following circumstances, it will not be
the expected behavior.

• Job execution consisting of Tasklet in a single step.

• In the chunk method, when number of data inputs is less than the commit-
interval.

• When an infinite loop occurs in the process.

Explain how to stop the job below.

• Stop from command line

◦ Available for both synchronous and asynchronous jobs

◦ Use -stop option of CommandLineJobRunner

The method of specifying the job name at startup

$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 classpath:/META-INF/jobs/job01.xml job01 -stop

• Stopping a job by its name specification is suitable for synchronous batch execution when jobs
with the same name rarely start in parallel.

The method of specifying the job execution ID (JobExecutionId)

$ java org.springframework.batch.core.launch.support.CommandLineJobRunner \
 classpath:/META-INF/jobs/job01.xml 3 -stop

• Stopping a job by JobExecutionId specification is suitable for asynchronous batch execution
when jobs with the same name often start in parallel.

7.2. How to use | 395

• For the confirmation method of JobExecutionId, refer to Confirmation of job
status/execution result.

• JobOpertion#stop() can be used to stop the job based on the JobExecutionId.
For stopping jobs using JobOperation#stop(), refer to "Stopping and restarting
jobs".

7.2.2. Customizing Exit Codes

When the job is terminated by synchronous execution, the exit code of the java process can be
customized according to the exit code of the job or step. To customize the exit code of java process,
the following operations are required.

1. Change exit code of step.

2. Change exit code of job in accordance with exit code of step.

3. Map exit code of job and exit code of java process.

About significance of exit code

In this section, exit codes are handled with two significances and respective
explanations are given below.

• Exit code of character strings like COMPLETED, FAILED are considered as exit
codes of job or step.

• Exit code of numerical values like 0, 255 are considered as exit codes of Java
process.

7.2.2.1. Change exit codes of step

How to change exit code of step for each process model is shown below.

Change exit code of step in chunk model

Implement afterStep method of StepExecutionListener as a process while terminating step and
return exit code of any step.

396 | 7.2. How to use

An implementation example of StepExecutionListener

@Component
public class ExitStatusChangeListener implements StepExecutionListener {

 @Override
 public ExitStatus afterStep(StepExecution stepExecution) {

 ExitStatus exitStatus = stepExecution.getExitStatus();
 if (conditionalCheck(stepExecution)) {
 // (1)
 exitStatus = new ExitStatus("CUSTOM STEP FAILED");
 }
 return exitStatus;
 }

 private boolean conditionalCheck(StepExecution stepExecution) {
 // omitted.
 }
}

Job definition

<batch:step id="exitstatusjob.step">
 <batch:tasklet transaction-manager="transactionManager">
 <batch:chunk reader="reader" writer="writer" commit-interval="10" />
 </batch:tasklet>
 <batch:listeners>
 <batch:listener ref="exitStatusChangeListener"/>
 </batch:listeners>
</batch:step>

List of implementation contents

Sr. No. Description

(1) Set custom exit code according to the execution result of step.

Change exit code of step in tasklet model

Configure exit code of any step in StepContribution - an argument of execute method of Tasklet.

7.2. How to use | 397

Tasklet implementation example

@Override
public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext)
throws Exception {

 // omitted.
 if (errorCount > 0) {
 contribution.setExitStatus(new ExitStatus("STEP COMPLETED WITH SKIPS")); //
(1)
 }
 return RepeatStatus.FINISHED;
}

List of implementation contents

Sr. No. Description

(1) Configure a unique exit code in accordance with the execution results of
tasklet.

7.2.2.2. Change exit code of job

Implement afterJob method of JobExecutionListener as a process while terminating the job and
configure exit code of last job by exit code of each step.

An Implementation example of JobExecutionListener

@Component
public class JobExitCodeChangeListener extends JobExecutionListenerSupport {

 @Override
 public void afterJob(JobExecution jobExecution) {
 // (1)
 for (StepExecution stepExecution : jobExecution.getStepExecutions()) {
 if ("STEP COMPLETED WITH SKIPS".equals(stepExecution.getExitStatus
().getExitCode())) {
 jobExecution.setExitStatus(new ExitStatus("JOB COMPLETED WITH
SKIPS"));
 logger.info("Change status 'JOB COMPLETED WITH SKIPS'");
 break;
 }

 }
 }
}

398 | 7.2. How to use

Job definition

<batch:job id="exitstatusjob" job-repository="jobRepository">
 <batch:step id="exitstatusjob.step">
 <!-- omitted -->
 </batch:step>
 <batch:listeners>
 <batch:listener ref="jobExitCodeChangeListener"/>
 </batch:listeners>
</batch:job>

List of implementation contents

Sr. No. Description

(1) Set the final job exit code to JobExecution according to the execution result of
the job.
In this case, if CUSTOM STEP FAILED is included in one of the exit codes returned
from the step, It has an exit code CUSTOM FAILED.

7.2.2.3. Mapping of exit codes

Define the mapping between exit code of job and exit code of the process.

launch-context.xml

<!-- exitCodeMapper -->
<bean id="exitCodeMapper"
 class="org.springframework.batch.core.launch.support.SimpleJvmExitCodeMapper">
 <property name="mapping">
 <util:map id="exitCodeMapper" key-type="java.lang.String"
 value-type="java.lang.Integer">
 <!-- ExitStatus -->
 <entry key="NOOP" value="0" />
 <entry key="COMPLETED" value="0" />
 <entry key="STOPPED" value="255" />
 <entry key="FAILED" value="255" />
 <entry key="UNKNOWN" value="255" />
 <entry key="CUSTOM FAILED" value="100" /> <!-- Custom Exit Status -->
 </util:map>
 </property>
</bean>

Process exit code 1 is prohibited

Generally, when a Java process is forcibly terminated due to a VM crash or
SIGKILL signal reception, the process may return 1 as the exit code. Since it should
be clearly distinguished from the exit code of a batch application regardless of
whether it is normal or abnormal, do not define 1 as a process exit code within an
application.

7.2. How to use | 399

About the difference between status and exit code

There are "status (STATUS)" and "exit code (EXIT_CODE)" as the states of jobs and steps
managed by JobRepository, but they differ in the following points.

• The status can not be customized because it is used in internal control of
Spring Batch and specific value by enum type BatchStatus is defined.

• The exit code can be used for job flow control and process exit code change,
and can be customized.

7.2.3. Double Activation Prevention

In Spring Batch, when running a job, confirm whether the following combination exists from
JobRepositry to JobInstance(BATCH_JOB_INSTANCE table).

• Job name to be activated

• Job parameters

TERASOLUNA Batch 5.x makes it possible to activate multiple times even if the combinations of job
and job parameters match.
In other words, it allows double activation. For details, refer to Job Activation Parameter.

In order to prevent double activation, it is necessary to execute in the job scheduler or application.
Detailed means are strongly dependent on job scheduler products and business requirements, so
omitted here.
Consider whether it is necessary to suppress double start for each job.

7.2.4. Logging

Explain log setting method.

Log output, settings and considerations are in common with TERASOLUNA Server 5.x. At first, refer
to Logging.

Explain specific considerations of TERASOLUNA Batch 5.x here.

7.2.4.1. Clarification of log output source

It is necessary to be able to clearly specify the output source job and job execution at the time of
batch execution. Therefore, it is good to output the thread name, the job name and the job
execution ID. Especially at asynchronous execution, since jobs with the same name will operate in
parallel with different threads, recording only the job name may make it difficult to specify the log
output source.

Each element can be realized in the following way.

Thread name

Specify %thread which is the output pattern of logback.xml

400 | 7.2. How to use

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/GeneralFuncDetail/Logging.html

Job name / Job Execution ID

Create a component implementing JobExecutionListener and record it at the start and end of the
job

An implementation example of JobExecutionListener

// package and import omitted.

@Component
public class JobExecutionLoggingListener implements JobExecutionListener {
 private static final Logger logger =
 LoggerFactory.getLogger(JobExecutionLoggingListener.class);

 @Override
 public void beforeJob(JobExecution jobExecution) {
 // (1)
 logger.info("job started. [JobName:{}][jobExecutionId:{}]",
 jobExecution.getJobInstance().getJobName(), jobExecution.getId());
 }

 @Override
 public void afterJob(JobExecution jobExecution) {
 // (2)
 logger.info("job finished.[JobName:{}][jobExecutionId:{}][ExitStatus:{}]"
 , jobExecution.getJobInstance().getJobName(),
 , jobExecution.getId(), jobExecution.getExitStatus().getExitCode());
 }

}

Job Bean definition file

<!-- omitted. -->
<batch:job id="loggingJob" job-repository="jobRepository">
 <batch:step id="loggingJob.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <!-- omitted. -->
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <!-- (3) -->
 <batch:listener ref="jobExecutionLoggingListener"/>
 </batch:listeners>
</batch:job>
<!-- omitted. -->

An example of log output of job name and job execution ID

7.2. How to use | 401

Sr. No. Description

(1) Before starting the job, the job name and job execution ID
are output to the INFO log.

(2) When the job ends, an exit code is also output in addition
to (1).

(3) Associate JobExecutionLoggingListener registered as a
component with the bean definition of a specific job.

7.2.4.2. Log Monitoring

In the batch application, the log is the main user interface of the operation. Unless the monitoring
target and the actions at the time of occurrence are clearly designed, filtering becomes difficult and
there is a danger that logs necessary for action are buried. For this reason, it is advisable to
determine in advance a message or code system to be a keyword to be monitored for logs. For
message management to be output to the log, refer to "Message Management" below.

7.2.4.3. Log Output Destination

For log output destinations in batch applications, it is good to design in which units logs are
distributed / aggregated. For example, even when logs are output to a flat file, multiple patterns are
considered as follows.

• Output to one file per one job

• Output to one file in units of multiple jobs grouped together

• One Output to one file per server

• Output multiple servers in one file

In each case, depending on the total number of jobs / the total amount of logs / I/O rate to be
generated in the target system, it is decided which unit is best to be grouped. It also depends on
how to check logs. It is assumed that options will change depending on the utilization method such
as whether to refer frequently from the job scheduler or from the console frequently.

The important thing is to carefully examine the log output in operational design and to verify the
usefulness of the log in the test.

7.2.5. Message Management

Explain message management.

In order to prevent variations in the code system and to facilitate designing extraction as a keyword
to be monitored, it is desirable to give messages according to certain rules.

As with logging, message management is basically the same as TERASOLUNA Server 5.x.

402 | 7.2. How to use

About utilization of MessageSource

MessageSource can be used to use messages from property files.

• For specific settings and implementation examples, refer to Uniform
management of log messages

◦ As a sample of log output here, it is exemplified along the case of the Spring
MVC controller, but please replace it to any component of Spring Batch.

◦ Instance of MessageSource is generated independently here, but it is not
necessary for TERASOLUNA Batch 5.x. This is because each component is
accessed only after ApplicationContext is created. In TERASOLUNA Batch
5.x, it is set as follows.

launch-context.xml

<bean id="messageSource"

class="org.springframework.context.support.ResourceBundleMessageSource"
 p:basenames="i18n/application-messages" />

7.2. How to use | 403

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/GeneralFuncDetail/Logging.html#id8
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/GeneralFuncDetail/Logging.html#id8

Chapter 8. Flow control and parallel,
multiple processing

8.1. Flow control

8.1.1. Overview

It is a method of implementing a single business process by splitting one job to multiple jobs and
combining them instead of implementing by integrating them in one job. The item wherein
dependency relationship between jobs is defined, is called as job net.

The advantages of defining a job net are enumerated below.

• It is easier to visualize progress status of a process

• It is possible to do partial re-execution, pending execution and stop execution of jobs

• It is easier to do parallel execution of jobs

As described above, when designing batch processing, it is common to design the job net and the
jobs together.

Suitability of Processing Contents and Job Net

Job nets are often not suitable for simple business process that does not need to be
splitted and processing that cooperates with the online process.

In this guideline, controlling the flow of jobs between job nets is called flow control. In the
processing flow, the previous job is called as preceding job and the next job is called as subsequent
job. The dependency relationship between the preceding job and the subsequent job is called
preceding and succeeding relationship.

The conceptual diagram of flow control is shown below.

404 | 8.1. Flow control

Overview of flow control

As shown above, flow control can be implemented by both the job scheduler and TERASOLUNA
Batch 5.x. However, it is desirable to use the job scheduler as much as possible due to the following
reasons.

When implemented in TERASOLUNA Batch 5.x

• There is a strong tendency to have diverse processes and status for one job making it easier to
form a black box.

• The boundary between the job scheduler and the job becomes ambiguous

• It becomes difficult to see the situation at the time of abnormality from the job scheduler

However, it is generally known that there are following disadvantages when the number of jobs
defined in the job scheduler increases.

• The following costs are accumulated by the job scheduler, and the processing time of the entire
system increases.

◦ Job scheduler product specific communication, control of execution node, etc.

◦ Overhead cost associated with Java process start for each job

8.1. Flow control | 405

• Number of job registrations limit

The policy is as follows.

• Basically, flow control is performed by the job scheduler.

• Following measures are taken only when any damage is caused due to the large number of jobs.

◦ Multiple sequential processes are consolidated in one job in TERASOLUNA Batch 5.x.

▪ Simple preceding and succeeding relationships are only consolidated in one job.

▪ The change of the step exit code and the conditional branch of the subsequent step
activation based on this exit code can be functionally used, however, since job execution
management becomes complicated, in principle, only the process exit code
determination at the end of the job is used.

 Refer to "Customization of exit code" for the details of deciding job exit code.

The points to be considered for implementing preceding and succeeding processes are shown
below.

Flow control by job scheduler

Points to be considered

• Job scheduler starts java process through shell.

• One job should correspond to one java process.

◦ In the entire process, 4 java processes start.

• The job scheduler controls the start order of each process. Each java process is independent.

• The process exit code of the preceding job is used for deciding the start of the succeeding job.

• External resources such as files, database etc. should be used to pass the data between jobs.

406 | 8.1. Flow control

Flow control by TERASOLUNA Batch 5.x

Points to be considered

• Job scheduler starts java process through shell.

• One job should be one java process.

◦ In the entire process, only one java process is used.

• Start order of each step is controlled by one java process. Each step is independent.

• The exit code of the preceding job is used for deciding the start of the succeeding job.

• The data can be passed between steps by in-memory.

How to implement flow control by TERASOLUNA Batch 5.x is explained below.
The flow control of job scheduler is strongly dependent on the product specifications so it is not
explained here.

Application example of flow control

In general, parallel/multiple processes of multiple jobs are often implemented by
job scheduler and job net.
However, in TERASOLUNA Batch 5.x, how to implement parallel and multiple
processes of multiple jobs by applying the flow control function, is explained.
Refer to "Parallel and multiple process" for details.

The usage method of this function is same in the chunk model as well as tasklet model.

8.1.2. How to use

How to use flow control in TERASOLUNA Batch 5.x is explained.

8.1. Flow control | 407

8.1.2.1. Sequential flow

A sequential flow is a flow in which preceding step and succeding step are connected in series.
If any business process ends abnormally in a step of the sequential flow, the succeeding step is not
executed and the job is interrupted. In this case, the step and job status and exit code associated
with the job execution ID are recorded as FAILED by JobRepository.
By restarting after recovering the cause of failure, it is possible to resume the process from the
abnormally ended step.

 Refer to "Job restart" for how to restart a job.

Here, a sequential flow of the jobs having 3 steps is set.

Bean definition

<bean id="sequentialFlowTasklet"
 class="org.terasoluna.batch.functionaltest.ch08.flowcontrol.SequentialFlowTasklet"
 p:failExecutionStep="#{jobParameters['failExecutionStep']}" scope="step"/>

<batch:step id="parentStep">
 <batch:tasklet ref="sequentialFlowTasklet"
 transaction-manager="jobTransactionManager"/>
</batch:step>

<batch:job id="jobSequentialFlow" job-repository="jobRepository">
 <batch:step id="jobSequentialFlow.step1"
 next="jobSequentialFlow.step2" parent="parentStep"/> <!-- (1) -->
 <batch:step id="jobSequentialFlow.step2"
 next="jobSequentialFlow.step3" parent="parentStep"/> <!-- (1) -->
 <batch:step id="jobSequentialFlow.step3" parent="parentStep"/> <!-- (2) -->
</batch:job>

Sr. No. Explanation

(1) Specify the next step to be started after this step ends normally in <batch:step>.
Set id of the next step to next attribute.

(2) next attribute is not required in the step at the end of the flow.

As a result, steps are started in series in the following order.
jobSequentialFlow.step1 → jobSequentialFlow.step2 → jobSequentialFlow.step3

408 | 8.1. Flow control

How to define using <batch:flow>

In the above example, the flow is directly defined in <batch: job> . Flow
definition can be defined outside using <batch:flow>. An example of using
<batch:flow> is shown below.

<batch:job id="jobSequentialOuterFlow" job-repository="jobRepository">
 <batch:flow id="innerFlow" parent="outerFlow"/> <!-- (1) -->
</batch:job>

<!-- (2) -->
<batch:flow id="outerFlow">
 <batch:step id="jobSequentialOuterFlow.step1"
 next="jobSequentialOuterFlow.step2"
 parent="parentStep"/>
 <batch:step id="jobSequentialOuterFlow.step2"
 next="jobSequentialOuterFlow.step3"
 parent="parentStep"/>
 <batch:step id="jobSequentialOuterFlow.step3"
 parent="parentStep"/>
</batch:flow>

Sr. No. Explanation

(1) Set flow id defined in (2) to the parent attribute.

(2) Define sequential flow.

8.1.2.2. Passing data between steps

In Spring Batch, ExecutionContext of execution context that can be used in the scope of each step
and job is provided. By using the step execution context, data can be shared between the
components in the step. At this time, since the step execution context cannot be shared between
steps, the preceding step execution context cannot be referred from the succeeding step execution
context. It can be implemented if the job execution context is used, but since it can be referred from
all steps, it needs to be handled carefully. When the information between the steps needs to be
inherited, it can be done by the following procedure.

1. In the post-processing of the preceding step, the information stored in the step execution
context is passed to the job execution context.

2. The succeeding step gets information from the job execution context.

By using ExecutionContextPromotionListener provided by Spring Batch, the first procedure can be
realized only by specifying the inherited information to the listener even without implementing it.

8.1. Flow control | 409

Notes on using ExecutionContext

ExecutionContext used for passing data is saved in serialized state in
BATCH_JOB_EXECUTION_CONTEXT and BATCH_JOB_STEP_EXECUTION_CONTEXT of RDBMS so
note the following 3 points.

1. The passed data should be an object in a serializable format.

◦ java.io.Serializable should be implemented.

2. Minimum required passed data should be retained.
ExecutionContext is also used for storing execution control information by
Spring Batch, so larger the passed data, the more the serialization cost.

3. The above ExecutionContextPromotionListener should be used for passed data
without saving it directly in the job execution context.
The job execution context has a wider scope than the step execution context,
unnecessary serialized data gets easily accumulated.

Also, it is possible to exchange information by sharing Bean of Singleton or Job
scope rather than going through the execution context. Note that if the method is
too large, it may put pressure on memory resources.

The data passed between steps is explained for the tasklet model and the chunk model respectively
below.

8.1.2.2.1. Data passing between steps using tasklet model

In order to save and fetch passing data, get ExecutionContext from ChunkContext and pass the data
between the steps.

410 | 8.1. Flow control

Implementation example of data passing source Tasklet

// package, imports are omitted.

@Component
public class SavePromotionalTasklet implements Tasklet {

 // omitted.

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {

 // (1)
 chunkContext.getStepContext().getStepExecution().getExecutionContext()
 .put("promotion", "value1");

 // omitted.

 return RepeatStatus.FINISHED;
 }
}

Implementation example of data passing destination Tasklet

// package and imports are omitted.

@Component
public class ConfirmPromotionalTasklet implements Tasklet {

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) {
 // (2)
 Object promotion = chunkContext.getStepContext().getJobExecutionContext()
 .get("promotion");

 // omitted.

 return RepeatStatus.FINISHED;
 }
}

8.1. Flow control | 411

Description example of job Bean definition

<!-- import,annotation,component-scan definitions are omitted -->

<batch:job id="jobPromotionalFlow" job-repository="jobRepository">
 <batch:step id="jobPromotionalFlow.step1" next="jobPromotionalFlow.step2">
 <batch:tasklet ref="savePromotionalTasklet"
 transaction-manager="jobTransactionManager"/>
 <batch:listeners>
 <batch:listener>
 <!-- (3) -->
 <bean
class="org.springframework.batch.core.listener.ExecutionContextPromotionListener"
 p:keys="promotion"
 p:strict="true"/>
 </batch:listener>
 </batch:listeners>
 </batch:step>
 <batch:step id="jobPromotionalFlow.step2">
 <batch:tasklet ref="confirmPromotionalTasklet"
 transaction-manager="jobTransactionManager"/>
 </batch:step>
</batch:job>
<!-- omitted -->

Explanation of implementation contents

Sr. No. Explanation

(1) Set the value to be passed to the after step in the ExecutionContext of the step execution
context. Here, promotion is specified as the key required for a series of data passing.

(2) Get the passing data set in (1) of the preceding step using promotion key specified in the
passing source from ExecutionContext.
Note that the ExecutionContext used here is not the step execution context of (1) but is
the job execution context.

(3) Using ExecutionContextPromotionListener, pass the data from the step execution context
to the job execution context.
Specify the passing key specified in (1) to keys property.
IllegalArgumentException is thrown by strict=true property when it does not exist in the
step execution context. In case of false, processing continues even if there is no passing
data.

Regarding ExecutionContextPromotionListener and step exit code

ExecutionContextPromotionListener passes the data from step execution context to
job execution context only when the step exit code of data passing source ends
normally (COMPLETED).
To customize the exit code in which the succeeding step is executed continuously,
exit code should be specified in status property in the array format.

412 | 8.1. Flow control

8.1.2.2.2. Data passing between steps using the chunk model

Use the method assigned with @AfterStep and @BeforeStep annotation in ItemProcessor. The listener
to be used for data passing and how to use ExecutionContext is the same as the tasklet model.

Implementation example of data passing source ItemProcessor

// package and imports are omitted.

@Component
@Scope("step")
public class PromotionSourceItemProcessor implements ItemProcessor<String, String> {

 @Override
 public String process(String item) {
 // omitted.
 }

 @AfterStep
 public ExitStatus afterStep(StepExecution stepExecution) {
 // (1)
 stepExecution.getExecutionContext().put("promotion", "value2");

 return null;
 }
}

Implementation example of data passing target ItemProcessor

// package and imports are omitted.

@Component
@Scope("step")
public class PromotionTargetItemProcessor implements ItemProcessor<String, String> {

 @Override
 public String process(String item) {
 // omitted.
 }

 @BeforeStep
 public void beforeStep(StepExecution stepExecution) {
 // (2)
 Object promotion = stepExecution.getJobExecution().getExecutionContext()
 .get("promotion");
 // omitted.
 }
}

8.1. Flow control | 413

Description example of job Bean definition

<!-- import,annotation,component-scan definitions are omitted -->
<batch:job id="jobChunkPromotionalFlow" job-repository="jobRepository">
 <batch:step id="jobChunkPromotionalFlow.step1" parent="sourceStep"
 next="jobChunkPromotionalFlow.step2">
 <batch:listeners>
 <batch:listener>
 <!-- (3) -->
 <bean
class="org.springframework.batch.core.listener.ExecutionContextPromotionListener"
 p:keys="promotion"
 p:strict="true" />
 </batch:listener>
 </batch:listeners>
 </batch:step>
 <batch:step id="jobChunkPromotionalFlow.step2" parent="targetStep"/>
</batch:job>

<!-- step definitions are omitted. -->

Explanation of implementation contents

Sr. No. Explanation

(1) Set the value to be passed to the succeeding step to ExecutionContext of step execution
context. Here, promotion is specified as the key required for a series of data passing.

(2) Get the passing data set in (1) of the preceding step using promotion key specified in the
passing source from ExecutionContext.
Note that the ExecutionContext used here is not the step execution context of (1) but is
the job execution context.

(3) Using ExecutionContextPromotionListener, pass the data from the step execution context
to the job execution context.
Specification of property is same as the tasklet.

8.1.3. How to extend

Here, the conditional branch of the succeeding step and the stop condition to stop the job before the
execution of succeeding step according to the condition is described.

Difference between exit code and status of job and step.

In the following explanation, the terms "Status" and "Exit code" frequently appear.
If these discrimination cannot be done, there is a possibility of confusion, please
refer the Customization of exit code first.

8.1.3.1. Conditional branching

The conditional branch means receiving the exit code which is the execution result of the preceding
step, selecting one from multiple after steps and continuing execution.

414 | 8.1. Flow control

To stop the job without executing any succeeding step, refer to "Stop condition".

Description example Job Bean definition

<batch:job id="jobConditionalFlow" job-repository="jobRepository">
 <batch:step id="jobConditionalFlow.stepA" parent="conditionalFlow.parentStep">
 <!-- (1) -->
 <batch:next on="COMPLETED" to="jobConditionalFlow.stepB" />
 <batch:next on="FAILED" to="jobConditionalFlow.stepC"/>
 </batch:step>
 <!-- (2) -->
 <batch:step id="jobConditionalFlow.stepB" parent="conditionalFlow.parentStep"/>
 <!-- (3) -->
 <batch:step id="jobConditionalFlow.stepC" parent="conditionalFlow.parentStep"/>
</batch:job>

Explanation of implementation contents

Sr. No. Explanation

(1) Do not specify next attribute in the <batch:step> element as in the sequential flow. By
setting multiple <batch:next>, it can be assigned to the succeeding step specified by to
attribute.
Specify exit code of the step that is the transition condition, in on.

(2) It is the succeeding step executed only when the step exit code of (1) is COMPLETED.

(3) It is the succeeding step executed only when the step exit code of (1) is FAILED.
By specifying this, succeeding step such as recovery process etc. is executed without
stopping the job when the preceding step process fails.

Notes on recovery process by after steps

When recovery process of the succeeding step is performed due to failure of
preceding step process (Exit code is FAILED), the status of before step changes to
ABANDONED and it cannot restart regardless of success or failure of the recovery
process.

When the recovery process of the succeeding step fails, only the recovery process
is re-executed on restarting the job.
For this reason, when processing is to be performed again including the preceding
step, it is necessary to rerun as another job execution.

8.1.3.2. Stop condition

How to stop the job depending on the exit code of the preceding step, is explained.
There are methods to specify the following 3 elements as means to stop.

1. end

2. fail

3. stop

8.1. Flow control | 415

If these exit codes correspond to the preceding step, the succeeding step is not executed.
Multiple exit codes can be specified within the same step.

Description example of job Bean definition

<batch:job id="jobStopFlow" job-repository="jobRepository">
 <batch:step id="jobStopFlow.step1" parent="stopFlow.parentStep">
 <!-- (1) -->
 <batch:end on="END_WITH_NO_EXIT_CODE"/>
 <batch:end on="END_WITH_EXIT_CODE" exit-code="COMPLETED_CUSTOM"/>
 <!-- (2) -->
 <batch:next on="*" to="jobStopFlow.step2"/>
 </batch:step>
 <batch:step id="jobStopFlow.step2" parent="stopFlow.parentStep">
 <!-- (3) -->
 <batch:fail on="FORCE_FAIL_WITH_NO_EXIT_CODE"/>
 <batch:fail on="FORCE_FAIL_WITH_EXIT_CODE" exit-code="FAILED_CUSTOM"/>
 <!-- (2) -->
 <batch:next on="*" to="jobStopFlow.step3"/>
 </batch:step>
 <batch:step id="jobStopFlow.step3" parent="stopFlow.parentStep">
 <!-- (4) -->
 <batch:stop on="FORCE_STOP" restart="jobStopFlow.step4" exit-code=""/>
 <!-- (2) -->
 <batch:next on="*" to="jobStopFlow.step4"/>
 </batch:step>
 <batch:step id="jobStopFlow.step4" parent="stopFlow.parentStep"/>
</batch:job>

Explanation of setting contents of job stop

Sr. No. Explanation

(1) When on attribute of <batch:end> and the step exit code match, the job is recorded as
normal end (Status : COMPLETED) in JobRepository.
When exit-code attribute is assigned, exit code of job can be customized from COMPLETED
by default.

(2) By specifying wildcard (*) in on attribute of <batch:next>, when it does not correspond to
any of end, fail, stop, subsequent job can be continued.
It is described at the end of step elements however, since matching condition of exist
code is evaluated before, the arrangement order of elements is optional if it is within
step elements.

(3) When <batch:fail> is used, the job is recorded as abnormal end (Status: FAILED) in
JobRepository.
Like <batch:end>, by assigning exit-code attribute, exit code of job can be customized
from FAILED by default.

416 | 8.1. Flow control

Sr. No. Explanation

(4) When <batch:stop> is used, the job is recorded as stopped (Status: STOPPED) in
JobRepository at the time of normal end of step.
For restart attribute, specify the stop where the job is resumed from stop at the time of
restart.
Like <batch:end>, exit-code attribute can be assigned, however, null string should be
specified.(refer to column later)

When customizing the exit code by the exit-code attribute, it should be mapped to the
process exit code without omission.

Refer to "Customization of exit code" for details.

Empty charactor string should be specified to exit-code in <batch:stop>.

<step id="step1" parent="s1">
 <stop on="COMPLETED" restart="step2"/>
</step>

<step id="step2" parent="s2"/>

The expected flow control should be that when step1 ends normally, the job stops
and step2 is executed when restart is executed again.
However, due to some failure in Spring Batch, the operation does not take place as
expected.
step2 is not executed after restart, the exit code of job becomes NOOP and status
COMPLETED.

To avoid this, "" (empty charactor string) should be assigned in exit-code as shown
above.

Refer to Spring Batch/BATCH-2315 for the details of failure.

8.1. Flow control | 417

https://jira.spring.io/browse/BATCH-2315

8.2. Parallel processing and multiple processing

8.2.1. Overview

Generally, the batch system where the batch window is severe (time available for batch processing)
is designed to reduce overall processing time as much as possible by operating multiple jobs in
parallel (hereafter referred to as parallel processing).
However, it may happen that processing time does not fit in the batch window due to large size of
one processing job.
In this case, a method to reduce processing time by dividing the processing data of a job and
performing multiple processing (hereafter referred to as multiple processing) can be used.
Although parallel processing and multiple processing can be handled with the same significance,
the definitions are given here as below.

Parallel processing

Execute multiple different jobs at the same time.

Schematic diagram of parallel processing

Multiple processing

Divide the processing target of 1 job and execute simultaneously.

Schematic diagram of multiple processing

A method to use job scheduler and a method to use TERASOLUNA Batch 5.x are used for both
parallel processing and multiple processing.
Note that, parallel processing and multiple processing in TERASOLUNA Batch 5.x is established on
Flow control.

418 | 8.2. Parallel processing and multiple processing

How to implement parallel processing and multiple processing

Implementation
method

Parallel processing Multiple processing

Job scheduler It is defined to enable execution of
multiple different jobs without
dependencies to run at the same time.

It is defined to execute multiple
identical jobs in different data scopes.
Pass information to narrow down data
to be processed by each job argument,
to each job.
For example, divide data of 1 year for
each month, divide by units such as
area, branch etc.

TERASOLUNA
Batch 5.x

Parallel Step (Parallel processing)
Perform parallel processing in steps.
Each step need not have identical
processing and parallel processing can
be performed for resources of
different types such as database and
file.

[Ch08_ParallelAndMultiple_Partitionin
g]
In the master step, a key to distribute
target data is fetched and in the slave
step, the distributed data is processed
based on this key.
Unlike parallel step, the processing of
the slave step is identical.

When job scheduler is used

Since one process is allocated to one job, it is activated by multiple processes. Hence, designing
and implementing one job is not very difficult.
However, since multiple processes are started, the load on machine resources increase when
number of synchronous executions increase.
Hence, when the number of synchronous executions is 3 or 4, a job scheduler may be used.
Of course, this number is not absolute. It would like you to used as a guide as it depends on
execution environment or job implementation.

When TERASOLUNA Batch 5.x is used

Since each step is assigned to a thread, it is operated as one process with multiple threads.
Hence, the difficulty level for design and implementation of one job is higher than while using a
job scheduler.
However, since the process is implemented by multiple threads, the load on machine resources
will not be as high as the time when job scheduler is used even when the number of
synchronous executions show an increase. Hence, when number of synchronous executions is
large (5 or more than 5), TERASOLUNA Batch 5.x may be used.
Of course, this number is not absolute. It would like you to used as a guide as it depends on
execution environment and system characteristics.

8.2. Parallel processing and multiple processing | 419

One of the parallel processing methods that can be executed in Spring Batch is
Multi Thread Step, however, its use in TERASOLUNA Batch 5.x is deprecated due to
following reasons.

A Multi Thread Step method

performs parallel processing by multiple threads in chunk units.

Reason for deprecation

A majority of Readers and Writers offered by Spring Batch are not designed for
multi-thread processing. Hence, issues like loss of data or duplicate processing
are likely to occur resulting in low process reliability. Further, since the process
is performed in multiple threads, a definite processing order is not established.
Even when ItemReader/ItemProcessor/ItemWriter is created on its own,
various points must be taken into consideration in order to use Multi Thread
Step like thread safe wherein difficulty of implementation and operation is
high. Multi Thread Step is deprecated for these reasons.
It is recommended to use Partitioning Step (Multiple processing) as an
alternative.

Existing ItemReader can be made thread safe by using
org.springframework.batch.item.support.SynchronizedItemStreamRe

ader. Even then issue of processing sequence is still to be
considered, Multi Thread Step is not used in TERASOLUNA Batch
5.x.

When data is to be updated to one database by parallel processing and multiple
processing, resource conflict and deadlock are likely to occur. Potential conflicts
should be eliminated from the job design stage.

Distributed processing for multiple processes and multiple housings is included in
Spring Batch as a function. However, since the failure design becomes difficult for
TERASOLUNA Batch 5.x, it should not be used.

The usage method of this function is same in the chunk model as well as tasklet model.

8.2.1.1. Parallel processing and multiple processing by job scheduler

Parallel processing and multiple processing using a job scheduler is explained here.

For job registration and schedule setting, refer the manual of the job scheduler to be used.

8.2.1.1.1. Parallel processing of jobs using job scheduler

The processes to be executed in parallel are registered as jobs and schedules are set so that each job
starts on the time. Each job can be registered as a different process.

8.2.1.1.2. Multiple processing of jobs using job scheduler

Processes to be subjected to multiple processing are registered multiple times and extraction scope

420 | 8.2. Parallel processing and multiple processing

of target data is specified by parameters. Further, the schedule is set to enable the respective jobs at
the same time. Although each job is in the same process, data range to be processed must be
independent.

8.2.2. How to use

A method to perform parallel processing and multiple processing in TERASOLUNA Batch 5.x is
explained.

8.2.2.1. Parallel Step (Parallel processing)

A method of Parallel Step (parallel processing) is explained.

Schematic diagram for Parallel Step

Description of schematic diagram

Separate processes can be defined for each step and can be executed in parallel. A thread is
allocated for each step.

How to define Parallel Step is shown below using schematic diagram of Parallel Step.

8.2. Parallel processing and multiple processing | 421

Job definition of Parallel Step

<!-- Task Executor -->
<!-- (1) -->
<task:executor id="parallelTaskExecutor" pool-size="10" queue-capacity="200"/>

<!-- Job Definition -->
<!-- (2) -->
<batch:job id="parallelStepJob" job-repository="jobRepository">
 <batch:split id="parallelStepJob.split" task-executor="parallelTaskExecutor">
 <batch:flow> <!-- (3) -->
 <batch:step id="parallelStepJob.step.chunk.db">
 <!-- (4) -->
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="fileReader" writer="databaseWriter"
 commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
 </batch:flow>

 <batch:flow> <!-- (3) -->
 <batch:step id="parallelStepJob.step.tasklet.chunk">
 <!-- (5) -->
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="chunkTransactionTasklet"/>
 </batch:step>
 </batch:flow>

 <batch:flow> <!-- (3) -->
 <batch:step id="parallelStepJob.step.tasklet.single">
 <!-- (6) -->
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="singleTransactionTasklet"/>
 </batch:step>
 </batch:flow>

 <batch:flow> <!-- (3) -->
 <batch:step id="parallelStepJob.step.chunk.file">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <!-- (7) -->
 <batch:chunk reader="databaseReader" writer="fileWriter"
 commit-interval="200"/>
 </batch:tasklet>
 </batch:step>
 </batch:flow>

 </batch:split>
</batch:job>

Description

422 | 8.2. Parallel processing and multiple processing

Descript
ion

Sr. No.

(1) Define a thread pool to assign to each thread for parallel processing.

(2) Define steps to be executed in parallel in <batch:split> tag in a format which uses
<batch:flow> tag.
Set the Bean of thread pool defined in (1), in task-executor attribute.

(3) Define <batch:step> wherein parallel processing is to be performed for each
<batch:flow>.

(4) Step 1 of schematic diagram ：Define intermediate commit method processing of chunk
model.

(5) Step 2 of schematic diagram ：Define intermediate commit method processing of tasklet
model.

(6) Step 3 of schematic diagram ：Define batch commit method processing of tasklet model.

(7) Step 4 of schematic diagram ：Define intermediate commit method processing for non-
transactional resources of chunk model.

Cases wherein processing performance deteriorates due to parallel processing

In the parallel processing, same process can be run in parallel by changing the
data range, similar to multiple processing. In this case, data range is assigned by
the parameters. At this time, if the amount of data to be processed for each process
is small, footprints such as the amount of resources occupied at the time of
operation and the processing time are worked disadvantageously in parallel
processing, and instead the processing performance may be deteriorated.

Examples of footprints

• Processing from opening for input resources to fetching initial data range

◦ Resource open requires more processing time than fetching data

◦ Similarly, a process which initializes memory area of data range requires
time

Further, steps of common processing can be defined as well before and after Parallel Step process.

8.2. Parallel processing and multiple processing | 423

Example of Parallel Step which includes common processing steps

<batch:job id="parallelRegisterJob" job-repository="jobRepository">
 <!-- (1) -->
 <batch:step id="parallelRegisterJob.step.preprocess"
 next="parallelRegisterJob.split">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="deleteDetailTasklet" />
 </batch:step>

 <!--(2) -->
 <batch:split id="parallelRegisterJob.split" task-executor="parallelTaskExecutor">
 <batch:flow>
 <batch:step id="parallelRegisterJob.step.plan">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="planReader" writer="planWriter"
 commit-interval="1000" />
 </batch:tasklet>
 </batch:step>
 </batch:flow>
 <batch:flow>
 <batch:step id="parallelRegisterJob.step.performance">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="performanceReader" writer="performanceWriter"
 commit-interval="1000" />
 </batch:tasklet>
 </batch:step>
 </batch:flow>
 </batch:split>
</batch:job>

Description

Sr. No. Description

(1) Define steps to be processed as preprocessing. Specify id set in <batch:split>, in next
attribute.
For details of subsequent step specification using next attribute, refer "Sequential flow".

(2) Define Parallel Step.
Define <batch:step> wherein parallel processing is to be performed for each
<batch:flow>.

8.2.2.2. Partitioning Step (Multiple processing)

A method of Partitioning Step (multiple processing) is explained.

424 | 8.2. Parallel processing and multiple processing

Schematic diagram of Partitioning Step

Description of schematic diagram

Partitioning Step is divided into processing phases of Master step and Slave step.

1. In Master step, Partitioner generates a Parition Key to specify data range wherein each Slave
step is processed. Parition Key is stored in the step context.

2. In Slave step, Parition Key assigned on its own from step context is fetched and data for
processing is specified using the same. Step defined for specified data for processing are
executed.

In the Partitioning Step, although it is necessary to divide the processing data, either of the variable
number and fixed number are handled for the number of partitionings.

Number of partitionings

In case of a variable number

Divide by department or process for each file existing in specific directory

In case of a fixed number

Process data by dividing overall data in fixed numbers

In Spring Batch, fixed number is called grid-size and data partitioning range is determined so that
grid-size becomes Partitioner.

In Partitioning Step, number of partitionings can be significantly higher than the thread size. In this
case, multiple executions are performed using number of threads and a step is generated wherein
the process is not executed until the thread becomes empty.

Use case of Partitioning Step is shown below.

8.2. Parallel processing and multiple processing | 425

Partitioning Step use case

Use case Master(Patitioner) Slave Number
of
partitio
nings

A case wherein transaction
information is divided or
multiple processing is
performed from master
information
Aggregate processing for
each department and for
each month

DB (Master information) DB (Transaction
information)

Variable

A case wherein multiple
processing is performed for
one file from a list of files
Branch-wise multiple
processing of transfer data
from each branch
(Aggregate processing for
each branch)

Multiple files Single file Variable

A case wherein a large
amount of data is divided by
a fixed number or multiple
processing is performed

A case wherein since
recovery design other than
re-run becomes difficult in
case of a failure occurrence,
it is not used the actual
operation.
In case of a re-run, since all
the records are processed
again, merits of partitioning
are eliminated.

Specify data range from
grid-size and transaction
information count

DB (Transaction
information)

Fixed

8.2.2.2.1. When number of partitionings are variable

A method wherein number of partitionings are made variable by Partitioning Step is explained.
Processing image is shown below.

426 | 8.2. Parallel processing and multiple processing

Processing image diagram

An implementation method taking the processing image as an example is shown.

8.2. Parallel processing and multiple processing | 427

Defining Repository(SQLMapper) (PostgreSQL)

<!-- (1) -->
<select id="findAll"
resultType="org.terasoluna.batch.functionaltest.app.model.mst.Branch">
 <![CDATA[
 SELECT
 branch_id AS branchId,
 branch_name AS branchName,
 branch_address AS branchAddrss,
 branch_tel AS branchTel,
 create_date AS createDate,
 update_date AS updateDate
 FROM
 branch_mst
]]>
</select>

<!-- (2) -->
<select id="summarizeInvoice"

resultType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerformance
Detail">
 <![CDATA[
 SELECT
 branchId, year, month, customerId, SUM(amount) AS amount
 FROM (
 SELECT
 t2.charge_branch_id AS branchId,
 date_part('year', t1.invoice_date) AS year,
 date_part('month', t1.invoice_date) AS month,
 t1.customer_id AS customerId,
 t1.invoice_amount AS amount
 FROM invoice t1
 INNER JOIN customer_mst t2 ON t1.customer_id = t2.customer_id
 WHERE
 t2.charge_branch_id = #{branchId}
) t3
 GROUP BY branchId, year, month, customerId
 ORDER BY branchId ASC, year ASC, month ASC, customerId ASC
]]>
</select>

<!-- omitted -->

428 | 8.2. Parallel processing and multiple processing

Implementation example of Partitioner

@Component
public class BranchPartitioner implements Partitioner {

 @Inject
 BranchRepository branchRepository; // (3)

 @Override
 public Map<String, ExecutionContext> partition(int gridSize) {

 Map<String, ExecutionContext> map = new HashMap<>();
 List<Branch> branches = branchRepository.findAll();

 int index = 0;
 for (Branch branch : branches) {
 ExecutionContext context = new ExecutionContext();
 context.putString("branchId", branch.getBranchId()); // (4)
 map.put("partition" + index, context); // (5)
 index++;
 }

 return map;
 }
}

8.2. Parallel processing and multiple processing | 429

Bean definition

<!-- (6) -->
<task:executor id="parallelTaskExecutor"
 pool-size="${thread.size}" queue-capacity="10"/>

<!-- (7) -->
<bean id="reader" class="org.mybatis.spring.batch.MyBatisCursorItemReader"
scope="step"

p:queryId="org.terasoluna.batch.functionaltest.app.repository.performance.InvoiceRepos
itory.summarizeInvoice"
 p:sqlSessionFactory-ref="jobSqlSessionFactory">
 <property name="parameterValues">
 <map>
 <!-- (8) -->
 <entry key="branchId" value="#{stepExecutionContext['branchId']}" />
 </map>
 </property>
</bean>

<!-- omitted -->

<batch:job id="multipleInvoiceSummarizeJob" job-repository="jobRepository">
 <!-- (9) -->
 <batch:step id="multipleInvoiceSummarizeJob.master">
 <!-- (10) -->
 <batch:partition partitioner="branchPartitioner"
 step="multipleInvoiceSummarizeJob.slave">
 <!-- (11) -->
 <batch:handler grid-size="0" task-executor="parallelTaskExecutor" />
 </batch:partition>
 </batch:step>
</batch:job>

<!-- (12) -->
<batch:step id="multipleInvoiceSummarizeJob.slave">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" writer="writer" commit-interval="10"/>
 </batch:tasklet>
</batch:step>

Description

Sr. No. Description

(1) Define a SQL wherein processing target is fetched from master data.

(2) Define a SQL wherein fetched values from master data are considered as search
conditions.

(3) Inject defined Repository(SQLMapper).

430 | 8.2. Parallel processing and multiple processing

Sr. No. Description

(4) Store master value processed by 1 Slave step in the step context.

(5) Store each Slave in Map so that it can fetch corresponding context.

(6) Define a thread pool to be assigned to each thread of Slave step in multiple processing.
Master step is processed by the main thread.

(7) Define ItemReader for fetching data using master value.

(8) Fetch master value set in (4) from step context and add to search conditions.

(9) Define Master step.

(10) Define processing to generate partitioning conditions of data.
Set Partitioner interface implementation, in partitioner attribute.
Set Bean ID of Slave Step defined in (12), in step attribute.

(11) Since grid-size is not used in partitioner, set any arbitrary value in grid-size attribute.
Set Bean ID of thread pool defined in (6), in task-executor attribute.

(12) Define Slave step.
Set ItemReader defined in (7), in reader attribute.

When multiple processing is performed for each file from the list of files, Partitioner given below
offered by Spring Batch can be used.

• org.springframework.batch.core.partition.support.MultiResourcePartitioner

How to use MultiResourcePartitioner is shown below.

8.2. Parallel processing and multiple processing | 431

An example wherein multiple processing is performed for files

<!-- (1) -->
<task:executor id="parallelTaskExecutor" pool-size="10" queue-capacity="200"/>

<!-- (2) -->
<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="#{stepExecutionContext['fileName']}"> <!-- (3) -->
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper"
 p:fieldSetMapper-ref="invoiceFieldSetMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="invoiceNo,salesDate,productId,customerId,quant,price"/>
 </property>
 </bean>
 </property>
</bean>

<!-- (4) -->
<bean id="patitioner"

class="org.springframework.batch.core.partition.support.MultiResourcePartitioner"
 scope="step"
 p:resources="file:#{jobParameters['basedir']}/input/invoice-*.csv"/> <!-- (5)
-->

<!--(6) -->
<batch:job id="inspectPartitioninglStepFileJob" job-repository="jobRepository">
 <batch:step id="inspectPartitioninglStepFileJob.step.master">
 <batch:partition partitioner="patitioner"
 step="inspectPartitioninglStepFileJob.step.slave">
 <batch:handler grid-size="0" task-executor="parallelTaskExecutor"/>
 </batch:partition>
 </batch:step>
</batch:job>

<!-- (7) -->
<batch:step id="inspectPartitioninglStepFileJob.step.slave">
 <batch:tasklet>
 <batch:chunk reader="reader" writer="writer" commit-interval="20"/>
 </batch:tasklet>
</batch:step>

Description

432 | 8.2. Parallel processing and multiple processing

Sr. No. Description

(1) Define a thread pool to be assigned to each thread of Slave step in multiple processing.
Master step is processed in the main thread.

(2) Define ItemReader to read a single file.

(3) In resouce property, specify the file split by MultiResourcePartitioner in input file.
MultiResourcePartitioner stores the file path in the step context using a key called
"fileName".

(4) Define MultiResourcePartitioner as Partitioner.

(5) Multiple files can be handled by using a pattern wherein * is used.

(6) Define Master step.
Definition contents are the same as contents of Partitioning Step described above.

(7) Define Slave step.
Set ItemReader defined in (2), in reader attribute.

8.2.2.2.2. When number of partitionings are fixed

How to fix number of partitionings in Partitioning Step is explained.
Processing image diagram is shown below.

Processing image diagram

How to implement is shown below using the processing image as an example.

8.2. Parallel processing and multiple processing | 433

Definition of Repository(SQLMapper) (PostgreSQL)

<!-- (1) -->
<select id="findByYearAndMonth"

resultType="org.terasoluna.batch.functionaltest.app.model.performance.SalesPerformance
Summary">
 <![CDATA[
 SELECT
 branch_id AS branchId, year, month, amount
 FROM
 sales_performance_summary
 WHERE
 year = #{year} AND month = #{month}
 ORDER BY
 branch_id ASC
 LIMIT
 #{dataSize}
 OFFSET
 #{offset}
]]>
</select>

<!-- (2) -->
<select id="countByYearAndMonth" resultType="_int">
 <![CDATA[
 SELECT
 count(*)
 FROM
 sales_performance_summary
 WHERE
 year = #{year} AND month = #{month}
]]>
</select>

<!-- omitted -->

434 | 8.2. Parallel processing and multiple processing

Implementation example of Partitioner

@Component
public class SalesDataPartitioner implements Partitioner {

 @Inject
 SalesSummaryRepository repository; // (3)

 // omitted.

 @Override
 public Map<String, ExecutionContext> partition(int gridSize) {

 Map<String, ExecutionContext> map = new HashMap<>();
 int count = repository.countByYearAndMonth(year, month);
 int dataSize = (count / gridSize) + 1; // (4)
 int offset = 0;

 for (int i = 0; i < gridSize; i++) {
 ExecutionContext context = new ExecutionContext();
 context.putInt("dataSize", dataSize); // (5)
 context.putInt("offset", offset); // (6)
 offset += dataSize;
 map.put("partition:" + i, context); // (7)
 }

 return map;
 }
}

8.2. Parallel processing and multiple processing | 435

Bean definition

<!-- (8) -->
<task:executor id="parallelTaskExecutor"
 pool-size="${thread.size}" queue-capacity="10"/>

<!-- (9) -->
<bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader" scope="step"

p:queryId="org.terasoluna.batch.functionaltest.ch08.parallelandmultiple.repository.Sal
esSummaryRepository.findByYearAndMonth"
 p:sqlSessionFactory-ref="jobSqlSessionFactory">
 <property name="parameterValues">
 <map>
 <entry key="year" value="#{jobParameters['year']}" value-
type="java.lang.Integer"/>
 <entry key="month" value="#{jobParameters['month']}" value-
type="java.lang.Integer"/>
 <!-- (10) -->
 <entry key="dataSize" value="#{stepExecutionContext['dataSize']}" />
 <!-- (11) -->
 <entry key="offset" value="#{stepExecutionContext['offset']}" />
 </map>
 </property>
</bean>

<!-- omitted -->

<batch:job id="multipleCreateSalesPlanSummaryJob" job-repository="jobRepository">
 <!-- (12) -->
 <batch:step id="multipleCreateSalesPlanSummaryJob.master">
 <!-- (13) -->
 <batch:partition partitioner="salesDataPartitioner"
 step="multipleCreateSalesPlanSummaryJob.slave">
 <!-- (14) -->
 <batch:handler grid-size="4" task-executor="parallelTaskExecutor" />
 </batch:partition>
 </batch:step>
</batch:job>

<!-- (15) -->
<batch:step id="multipleCreateSalesPlanSummaryJob.slave">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader" processor="addProfitsItemProcessor"
 writer="writer" commit-interval="10"/>
 </batch:tasklet>
</batch:step>

Description

436 | 8.2. Parallel processing and multiple processing

Sr. No. Description

(1) Define a pagination search (SQL narrowing down method) to fetch a specific data range.
For details of pagination search (SQL narrowing down method),refer Pagination search
of Entity (SQL narrow down method) of TERASOLUNA Server 5.x Development
Guideline.

(2) Define SQL to fetch total number of records for processing.

(3) Inject defined Repository(SQLMapper).

(4) Calculate data records processed by one Slave step.

(5) Store data records of (4) in step context.

(6) Store search start position of each Slave step in step context.

(7) Each Slave is stored in the Map to enable fetching of corresponding context.

(8) Define a thread poolto be assigned to each thread of Slave step in multiple processing.
Master step is processed by main thread.

(9) Define ItemReader for fetching data by using pagination search (SQL narrow down
method).

(10) Fetch data records set in (5) from step context and add to search conditions.

(11) Fetch search start position set in (6) from step context and add to search conditions.

(12) Define Master step.

(13) Define a process which generates partitioning conditions for data.
Set Partitioner interface implementation in partitioner attribute.
Set Bean ID of Slave step defined in (15), in step attribute.

(14) Set number of partitionings (fixed number) in grid-size attribute.
Set Bean ID of thread pool defined in (8), in task-executor attribute.

(15) Define Slave step.
Set ItemReader defined in (9), in reader attribute.

8.2. Parallel processing and multiple processing | 437

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#entity-sql
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/DataAccessDetail/DataAccessMyBatis3.html#entity-sql

Chapter 9. Tutorial

9.1. Introduction

9.1.1. Objective of the tutorial

This tutorial aims to achieve the basic knowledge of TERASOLUNA Batch 5.x by actually
experiencing the development of the application based on the contents described in TERASOLUNA
Batch 5.x Development guideline.

9.1.2. Target readers

This tutorial is written for architects and programmers who are experienced in software
development and it is assumed that readers possess the following knowledge.

• Basic knowledge of DI or AOP of Spring Framework

• Basic knowledge of SQL

• Experience of developing a Java-based application

9.1.3. Verification environment

Verification of environment conditions for this tutorials are shown as below.

Environment conditions

Software
classification

Product name

OS Windows 7 Professional SP1 (64bit)

JDK openjdk-1.8.0.131.x86_64

IDE Spring Tool Suite 3.8.2 released

Build Tool Apache Maven 3.3.9

RDBMS H2 Database 1.4.193

9.1.4. Overview of framework

Overview of processing model and architecture differences are explained here as the overview of
framework.
For Spring Batch, refer Architecture of Spring Batch of TERASOLUNA Batch 5.x Development
guideline for details.

Processing models offered by TERASOLUNA Batch 5.x include a chunk model and a tasklet model.
Respective features are explained below.

Chunk model

A method which inputs/processes/outputs a certain number of data records together. This

438 | 9.1. Introduction

collection of data is called as a chunk. A job can be implemented by standardizing flow of
processes like data input/processing/output and then implementing only a part of the process. It
is used while processing a large amount of data effectively.
For details, refer Chunk model.

Tasklet model

A method which describes a process freely. It is used in simple cases like issuing SQL only once,
issuing only command or in complex cases where it is difficult to standardize like accessing from
multiple databases or files while processing.
For details, refer Tasklet model.

For the processing model, the components and functional differences are shown in the table below.

Functional differences of processing model

Function Chunk model Tasklet model

Components It consists of ItemReader,
ItemProcessor, ItemWriter and
ChunkOrientedTasklet

It consists of Tasklet only.

Transaction A transaction occurs for every
chunk unit. Transaction control is
only for the intermediate commit.

Process is done by 1 transaction.
Either a batch commit method or
intermediate commit method can be
used for transaction control. Former
method uses a transaction control
system of Spring Batch whereas the
transaction is done directly by the
user in the latter method.

Recommended
reprocessing methods

Rerun and restart can be used. Generally, only rerun is used.

Exception handling Exception handling can be easily
performed by using a listener. It can
also be implemented individually by
using try-catch.

Individual implementation by using
try-catch is required.

In this tutorial, how to implement a chunk model and a tasklet model is explained for the
applications which use the basic functions. Since the implementation method varies according to
architecture of chunk model and tasklet model, it is recommended to proceed further after
completely understanding respective features of the model.

9.1.5. How to proceed with the tutorial

Since the applications (jobs) created in this tutorial consists of jobs created by adding
implementations to created jobs, the sequence in which they are created must be considered.

How to read and proceed with this tutorial is shown in the figure below along with sequence
relation of jobs to be created.

9.1. Introduction | 439

How to proceed with the tutorial

Execution timing for the asynchronous execution type job

The asynchronous execution method job is assumed to be the last job in the order of the progress of
this tutorial. However, if at least one job is created in the chunk model or tasklet model, the
asynchronous execution method job may be executed.

Additional implementation of jobs which inputs/outputs data by accessing a file

Implementation is added based on Job which inputs/outputs data by accessing
database, besides explanation of Job which inputs/outputs data by accessing the
file and the execution example is displayed. When you want to add an
implementation based on a job which inputs/outputs data by accessing a file, it
must be remembered that it is necessary to read the same.

440 | 9.1. Introduction

9.2. Description of the application to be created

9.2.1. Background

Some mass retail stores issue point cards for members.
Membership types include "Gold member", "Normal member" and the services are provided based
on the membership types.
As a part of the service, 100 points are added for "gold members" and 10 points are added for
"normal members" at the end of the month, for the members who have purchased a product during
that month.

9.2.2. Process overview

TERASOLUNA Batch 5.x will be using an application as a monthly batch process which adds points
based on membership type.

9.2.3. Business specifications

Business specifications are as shown below.

• "Members who have purchased a product within the month" are indicated by "product
purchasing" flag

◦ Product purchasing flag "0" indicates initial state whereas "1" indicates processing target

• When Product purchasing flag is "1"(processing target), points are added according to
membership type

◦ Add 100 points when membership type is "G"(gold member) and add 10 points when
membership type is "N"(Normal member)

• Product purchasing flag is updated to "0" (initial state) after adding points

• Upper limit for the points is 1,000,000 points

• If the points exceed 1,000,000 points after adding the points, they are adjusted to 1,000,000
points

9.2.4. Learning contents

We will learn about various functions and processing methods related to jobs by creating
applications (jobs) for simple business specifications.
Note that jobs implement tasklet model and chunk model respectively.
The main learning in each job is the functions and processing methods used in the job are shown
below.

Jobs created in this tutorial

Sr.
No.

Jobs Contents learnt

A A job that inputs/outputs
data by accessing a database

Learn about database access method which use ItemReader
and ItemWriter for MyBatis.

9.2. Description of the application to be created | 441

Sr.
No.

Jobs Contents learnt

B A job that inputs/outputs
data by accessing a file

Learn about file access method which use ItemReader and
ItemWriter for input and output of a flat file.

C A job that validates input
data

Learn input check methods using Bean Validation.

D A job that performs
exception handling by
ChunkListener

Learn exception handling methods which use ChunkListener as
a listener.

E A job which performs
exception handling by try-
catch

Learn exception handling which use try-catch, and a method
which outputs customised exit codes.

F Asynchronous execution
type job

Learn the methods of asynchronous execution which use DB
polling function provided by TERASOLUNA Batch 5.x.

Correspondence table for functions and processing methods used in A~F jobs, and explanation of
TERASOLUNA Batch 5.x Development guideline is shown below.

Correspondence table for A~F jobs and TERASOLUNA Batch 5.x Development guideline explanation

Sr.
No.

Functions A B C D E F

1 Start job > Activation method >
Synchronous execution

Chunk
Tasklet

Chunk
Tasklet

Chunk
Tasklet

Chunk
Tasklet

Chunk
Tasklet

2 Start job > Activation method >
Asynchronous execution (DB polling)

Chunk
Tasklet

3 Start job > Start-up parameters of job >
Assign from command line argument

Chunk
Tasklet

4 Start job > Listener Chunk
Tasklet

Chunk
Tasklet

5 Data input/output > Transaction control
> Transaction control in Spring Batch

Chunk
Tasklet

6 Data input/output > Transaction control
> In case of single data source >
Implementation of transaction control

Chunk
Tasklet

7 Data input/output > Database access >
Input

Chunk
Tasklet

8 Data input/output > Database access >
Output

Chunk
Tasklet

9 Data input/output > File access >
Variable length record > Input

Chunk
Tasklet

10 Data input/output > File access >
Variable length record > Output

Chunk
Tasklet

442 | 9.2. Description of the application to be created

Sr.
No.

Functions A B C D E F

11 Handling abnormalities > Input check Chunk
Tasklet

Chunk
Tasklet

12 Handling abnormalities > Exception
handling > Exception handling in step
unit > Exception handling by
ChunkListener interface

Chunk
Tasklet

13 Handling abnormalities > Exception
handling > Exception handling in step
unit > Exception handling in chunk
model

Chunk

14 Handling abnormalities > Exception
handling > Exception handling in step
unit > Exception handling in tasklet
model

Tasklet

15 Handling abnormalities > Exception
handling > Decide whether to continue
the process > Skip

Chunk
Tasklet

16 Job management > Job status
management > Verify job status and
execution results

Chunk
Tasklet

17 Job management > Customize exit code Chunk
Tasklet

18 Job management > Logging Chunk
Tasklet

Chunk
Tasklet

19 Job management > Message
management

Chunk
Tasklet

Chunk
Tasklet

9.2. Description of the application to be created | 443

9.3. Environment construction
Construct an environment to implement the tutorial with the following flow.

1. Creating a project

2. Import project

3. Build project

4. Verify / edit setup file

5. Preparation of input data

6. Preparation to refer database from STS

7. Verify operations of project

9.3.1. Creating a project

At first, use mvn archetype:generate of Maven Archetype Plugin and create a project.
A procedure to create a project by using Windows command prompt.

For details of how to create a project by using mvn archetype:generate, refer Create a project.

Through proxy server

If it is necessary to go through proxy server for connecting to internet, use Proxy
settings of STS, and Proxy settings of Maven.

Execute following command in the directory wherein a project is created.

Command prompt (Windows)

C:\xxx>mvn archetype:generate ^
 -DarchetypeGroupId=org.terasoluna.batch ^
 -DarchetypeArtifactId=terasoluna-batch-archetype ^
 -DarchetypeVersion=5.1.1.RELEASE

Set interactively as shown below.

Value to be set while creating a project

Item name Setting example

groupId org.terasoluna.batch

artifactId terasoluna-batch-tutorial

version 1.0.0-SNAPSHOT

package org.terasoluna.batch.tutorial

Verify that "BUILD SUCCESS" is displayed for mvn command as shown below.

444 | 9.3. Environment construction

http://maven.apache.org/guides/mini/guide-proxies.html

Implementation example

C:\xxx>mvn archetype:generate -DarchetypeGroupId=org.terasoluna.batch -Darchetyp
eArtifactId=terasoluna-batch-archetype -DarchetypeVersion=5.1.1.RELEASE
[INFO] Scanning for projects…​
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --

(.. omitted)

Define value for property 'groupId': org.terasoluna.batch
Define value for property 'artifactId': terasoluna-batch-tutorial
Define value for property 'version' 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package' org.terasoluna.batch: : org.terasoluna.batch
.tutorial
Confirm properties configuration:
groupId: org.terasoluna.batch
artifactId: terasoluna-batch-tutorial
version: 1.0.0-SNAPSHOT
package: org.terasoluna.batch.tutorial
 Y: : y
[INFO] ---

[INFO] Using following parameters for creating project from Archetype: terasolun
a-batch-archetype:5.1.1.RELEASE
[INFO] ---

[INFO] Parameter: groupId, Value: org.terasoluna.batch
[INFO] Parameter: artifactId, Value: terasoluna-batch-tutorial
[INFO] Parameter: version, Value: 1.0.0-SNAPSHOT
[INFO] Parameter: package, Value: org.terasoluna.batch.tutorial
[INFO] Parameter: packageInPathFormat, Value: org/terasoluna/batch/tutorial
[INFO] Parameter: package, Value: org.terasoluna.batch.tutorial
[INFO] Parameter: version, Value: 1.0.0-SNAPSHOT
[INFO] Parameter: groupId, Value: org.terasoluna.batch
[INFO] Parameter: artifactId, Value: terasoluna-batch-tutorial
[INFO] Project created from Archetype in dir: C:\xxx\terasoluna-batch-tutorial
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 45.293 s
[INFO] Finished at: 2017-08-22T09:03:01+09:00
[INFO] Final Memory: 16M/197M
[INFO] --

Execute sample job and verify that the project was created successfully.

9.3. Environment construction | 445

Execution of sample job (Verify that it is successfully created)

C:\xxx>cd terasoluna-batch-tutorial
C:\xxx>mvn clean dependency:copy-dependencies -DoutputDirectory=lib package
C:\xxx>java -cp "lib/*;target/*" ^
org.springframework.batch.core.launch.support.CommandLineJobRunner ^
META-INF/jobs/job01.xml job01

Verify that "BUILD SUCCESS" is displayed for mvn command and "COMPLETED" is displayed for
java command, as shown below.

446 | 9.3. Environment construction

Output example

C:\xxx>cd terasoluna-batch-tutorial

C:\xxx\terasoluna-batch-tutorial>mvn clean dependency:copy-dependencies -Doutput
Directory=lib package
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building TERASOLUNA Batch Framework for Java (5.x) Blank Project 1.0.0-SN
APSHOT
[INFO] --

(.. omitted)

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 9.462 s
[INFO] Finished at: 2017-08-22T09:12:22+09:00
[INFO] Final Memory: 26M/211M
[INFO] --

C:\xxx\terasoluna-batch-tutorial>java -cp "lib/*;target/*" org.springframework.b
atch.core.launch.support.CommandLineJobRunner META-INF/jobs/job01.xml job01
[2017/08/22 09:17:32] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Re
freshing org.springframework.context.support.ClassPathXmlApplicationContext@6204
3840: startup date [Tue Aug 22 09:17:32 JST 2017]; root of context hierarchy

(.. ommited)

[2017/08/22 09:17:35] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJ
ob: [name=job01]] launched with the following parameters: [{jsr_batch_run_id=1}]

[2017/08/22 09:17:35] [main] [o.s.b.c.j.SimpleStepHandler] [INFO] Executing ste
p: [job01.step01]
[2017/08/22 09:17:35] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJ
ob: [name=job01]] completed with the following parameters: [{jsr_batch_run_id=1}
] and the following status: [COMPLETED]
[2017/08/22 09:17:35] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Cl
osing org.springframework.context.support.ClassPathXmlApplicationContext@6204384
0: startup date [Tue Aug 22 09:17:32 JST 2017]; root of context hierarchy

9.3.2. Import project

Import a created project to STS.
Select [File] → [Import] → [Maven] → [Existing Maven Projects] → [Next] from STS menu and select
a project created by archetype.

9.3. Environment construction | 447

Set C:\xxx\terasoluna-batch-tutorial in Root Directory and press [Finish] when pom.xml of
org.terasoluna.batch is selected in Projects.

When the import is complete, the following project is displayed as below in the Package Explorer.

448 | 9.3. Environment construction

When a build error occurs after import

When a build error occurs after import, right click project name, click "Maven" →
"Update Project…", click "OK" to resolve the error.

Setting display format for the package

Display format of the package is "Flat" by default, but it should be set to
"Hierarchical".
Click "View Menu" of Package Explorer (Down right arrow) and select "Package
Presentation" → "Hierarchical".

9.3. Environment construction | 449

9.3.3. Build project

For project structure, refer Project structure.

9.3.4. Verify / edit setup file

9.3.4.1. Verify setup file

A majority of the settings like Spring Batch and MyBatis are already configured in the created
project.
For setting file of created project, refer Build project.

Customizing setting value

When implementing the tutorial, you do not need to understand the setting values
that need customization according to user’s situation. However, you should read it
before or after you perform the tutorial. For details, refer Settings for whole
application.

9.3.4.2. Editing setting file

Change setting of H2 Database for implementing the tutorial. Changes in the setting are shown
below.

• It is possible to connect to database from processes of multiple batch applications without
manually starting the server.

• It is possible to connect to database when the data is retained even after terminating batch
application processes.

Refer Features of H2 official document for details of H2 Database settings.

Basic details of editing are shown below.

Open batch-application.properties and edit admin.jdbc.url and jdbc.url as shown below.
Only the lines to be edited are described here for the sake of clarity in the example below, a new
line is added after comment out instead of overwriting.

src/main/resources/batch-application.properties

Application settings.

Admin DataSource settings.
#admin.jdbc.url=jdbc:h2:mem:batch-admin;DB_CLOSE_DELAY=-1
admin.jdbc.url=jdbc:h2:~/batch-admin;AUTO_SERVER=TRUE

Job DataSource settings.
#jdbc.url=jdbc:h2:mem:batch;DB_CLOSE_DELAY=-1
jdbc.url=jdbc:h2:~/batch-admin;AUTO_SERVER=TRUE

450 | 9.3. Environment construction

http://www.h2database.com/html/features.html

Reasons for specifying same databaseName (batch-admin) for admin.jdbc.url and
jdbc.url

Same databaseName is specified for admin.jdbc.url and jdbc.url, for connection
settings of JDBC driver while implementing the tutorial.

As described in Settings of overall application, admin.jdbc.url is a URL used by FW
(Spring Batch and TERASOLUNA Batch 5.x) and jdbc.url is a URL used by
individual jobs.

Originally, it is preferable to separate databases used by FW and individual jobs.
However, it is not necessary to switch between the databases in this tutorial, this
setting is used to enable easy reference to the table to be used in FW and tutorial.

9.3.5. Preparation of input data

9.3.5.1. Input data of jobs which inputs or outputs data by accessing database

Prepare input data to be used in A job which inputs or outputs data by accessing database.
Note that, implementation is not required when a job which inputs or outputs data by accessing
database is not be to created.

Preparation of input data is shown with the following flow.

1. Create table and initial data insertion script

2. Adding settings which executes script automatically while executing a job

Execute a script at the time of job execution (while generating ApplicationContext) and initialize
database by applying these settings.

9.3.5.1.1. Create table and initial data insertion script

Create table and initial data insertion script.

Create a sqls directory in the project root directory and store following 3 scripts.

• A script to create a table (create-member-info-table.sql)

• A script to insert initial data (normal) (insert-member-info-data.sql)

• A script to insert initial data (abnormal) (insert-member-info-error-data.sql)

Contents of the file to be created are shown below.

9.3. Environment construction | 451

sqls/create-member-info-table.sql

CREATE TABLE IF NOT EXISTS member_info (
 id CHAR(8),
 type CHAR(1),
 status CHAR(1),
 point INT,
 PRIMARY KEY(id)
);

452 | 9.3. Environment construction

sqls/insert-member-info-data.sql

TRUNCATE TABLE member_info;
INSERT INTO member_info (id, type, status, point) VALUES ('00000001', 'G', '1', 0);
INSERT INTO member_info (id, type, status, point) VALUES ('00000002', 'N', '1', 0);
INSERT INTO member_info (id, type, status, point) VALUES ('00000003', 'G', '0', 10);
INSERT INTO member_info (id, type, status, point) VALUES ('00000004', 'N', '0', 10);
INSERT INTO member_info (id, type, status, point) VALUES ('00000005', 'G', '1', 100);
INSERT INTO member_info (id, type, status, point) VALUES ('00000006', 'N', '1', 100);
INSERT INTO member_info (id, type, status, point) VALUES ('00000007', 'G', '0', 1000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000008', 'N', '0', 1000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000009', 'G', '1',
10000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000010', 'N', '1',
10000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000011', 'G', '0',
100000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000012', 'N', '0',
100000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000013', 'G', '1',
999901);
INSERT INTO member_info (id, type, status, point) VALUES ('00000014', 'N', '1',
999991);
INSERT INTO member_info (id, type, status, point) VALUES ('00000015', 'G', '0',
999900);
INSERT INTO member_info (id, type, status, point) VALUES ('00000016', 'N', '0',
999990);
INSERT INTO member_info (id, type, status, point) VALUES ('00000017', 'G', '1', 10);
INSERT INTO member_info (id, type, status, point) VALUES ('00000018', 'N', '1', 10);
INSERT INTO member_info (id, type, status, point) VALUES ('00000019', 'G', '0', 100);
INSERT INTO member_info (id, type, status, point) VALUES ('00000020', 'N', '0', 100);
INSERT INTO member_info (id, type, status, point) VALUES ('00000021', 'G', '1', 1000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000022', 'N', '1', 1000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000023', 'G', '0',
10000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000024', 'N', '0',
10000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000025', 'G', '1',
100000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000026', 'N', '1',
100000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000027', 'G', '0',
1000000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000028', 'N', '0',
1000000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000029', 'G', '1',
999899);
INSERT INTO member_info (id, type, status, point) VALUES ('00000030', 'N', '1',
999989);
COMMIT;

9.3. Environment construction | 453

sqls/insert-member-info-error-data.sql

TRUNCATE TABLE member_info;
INSERT INTO member_info (id, type, status, point) VALUES ('00000001', 'G', '0', 0);
INSERT INTO member_info (id, type, status, point) VALUES ('00000002', 'N', '0', 0);
INSERT INTO member_info (id, type, status, point) VALUES ('00000003', 'G', '1', 10);
INSERT INTO member_info (id, type, status, point) VALUES ('00000004', 'N', '1', 10);
INSERT INTO member_info (id, type, status, point) VALUES ('00000005', 'G', '0', 100);
INSERT INTO member_info (id, type, status, point) VALUES ('00000006', 'N', '0', 100);
INSERT INTO member_info (id, type, status, point) VALUES ('00000007', 'G', '1', 1000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000008', 'N', '1', 1000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000009', 'G', '0',
10000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000010', 'N', '0',
10000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000011', 'G', '1',
100000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000012', 'N', '1',
100000);
INSERT INTO member_info (id, type, status, point) VALUES ('00000013', 'G', '1',
1000001);
INSERT INTO member_info (id, type, status, point) VALUES ('00000014', 'N', '1',
999991);
INSERT INTO member_info (id, type, status, point) VALUES ('00000015', 'G', '1',
999901);
COMMIT;

9.3.5.1.2. Adding settings which executes script automatically while executing a job

Execute a script while executing a job (while generating ApplicationContext) and add definition of
<jdbc:initialize-database> tag to initialize database.

Edit following 2 files.

• Add path setting for script to be executed in batch-application.properties

• Add definition of <jdbc:initialize-database> tag in launch-context.xml

Specific setting details are shown below.

Open batch-application.properties and add path settings of script to be executed in the end.

• tutorial.create-table.script(A path for a script to create a table)

• tutorial.insert-data.script(A path for a script to insert initial data)

Normal data and abnormal data are defined with the same property name to enable easy change of
script to be executed, for the path of initial data insertion script, and commented out.

454 | 9.3. Environment construction

src/main/resources/batch-application.properties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

Open launch-context.xml, and add definition of <jdbc:initialize-database> tag, in <beans> tag.

src/main/resources/META-INF/spring/launch-context.xml

<!-- database initialize definition -->
<jdbc:initialize-database data-source="jobDataSource" enabled="${data-
source.initialize.enabled:false}" ignore-failures="ALL">
 <jdbc:script location="${tutorial.create-table.script}" />
 <jdbc:script location="${tutorial.insert-data.script}" />
</jdbc:initialize-database>

9.3.5.2. Input data for a job which inputs or outputs data by accessing the file

Prepare input data to be used in A job which inputs or outputs data by accessing a file.
Note that, the implementation is not required when a job which inputs or outputs data by accessing
a file is not created.

A storage directory is created for input and output files, and an input file is created for preparation
of input data.

Create following 2 directories to store input / output files in the project root directory.

• files/input

• files/output

Create following 2 files under files/input.

• Normal data input file (input-member-info-data.csv)

• Abnormal data input file (input-member-info-error-data.csv)

Store input file with following details in created input file storage directory.

Contents of the file to be created are as below.

9.3. Environment construction | 455

files/input/input-member-info-data.csv

00000001,G,1,0
00000002,N,1,0
00000003,G,0,10
00000004,N,0,10
00000005,G,1,100
00000006,N,1,100
00000007,G,0,1000
00000008,N,0,1000
00000009,G,1,10000
00000010,N,1,10000
00000011,G,0,100000
00000012,N,0,100000
00000013,G,1,999901
00000014,N,1,999991
00000015,G,0,999900
00000016,N,0,999990
00000017,G,1,10
00000018,N,1,10
00000019,G,0,100
00000020,N,0,100
00000021,G,1,1000
00000022,N,1,1000
00000023,G,0,10000
00000024,N,0,10000
00000025,G,1,100000
00000026,N,1,100000
00000027,G,0,1000000
00000028,N,0,1000000
00000029,G,1,999899
00000030,N,1,999989

456 | 9.3. Environment construction

files/input/input-member-info-error-data.csv

00000001,G,0,0
00000002,N,0,0
00000003,G,1,10
00000004,N,1,10
00000005,G,0,100
00000006,N,0,100
00000007,G,1,1000
00000008,N,1,1000
00000009,G,0,10000
00000010,N,0,10000
00000011,G,1,100000
00000012,N,1,100000
00000013,G,1,1000001
00000014,N,1,999991
00000015,G,1,999901

9.3.6. Preparation to refer database from STS

Since Data Source Explorer is used to refer database in this tutorial, configure Data Source
Explorer.
Database can be referred and SQL can be executed on STS by using Data Source Explorer.

Database targets to be referred in the tutorial are as shown below.

• Data for managing batch applications execution results and status persisting in JobRepository

• Data which uses A job which inputs or outputs data by accessing database

At first, display Data Source Explorer View.
Select [Window] → [Show View] → [Other…] from STS menu and press [OK] when Data Source
Explorer is selected under Data Source Management.

9.3. Environment construction | 457

Data Source Explorer View is displayed on the workbench.

458 | 9.3. Environment construction

Next, create a ConnectionProfile to connect to a database.
Right-click Database Connection of Data Source Explorer View, press [New…] and display
Connection Profile.
Then, select Generic JDBC, and click [Next] when H2 Database is entered in Name.
(Any value can be entered in Name.)

Since Driver is not configured in the initial state, add a Driver to connect to H2 Database.
Click New Driver Definition button on the right side of Drivers drop down list, and display
definition window of Driver.

Select Generic JDBC driver under Available driver templates, of Name/Type tab.

9.3. Environment construction | 459

Next, open JAR List tab, click [Add Jar/Zip…], select jar file of H2 Database and click [Open].

A location where jar of H2 Database is stored

jar of H2 Database is stored under lib directory of project root directory.
This is because dependency libraries are copied under lib directory by executing
following command of Execution of sample jobs (Verify that they are created
appropriately). Following command should be executed when lib directory does
not store jar of H2 Database.

C:\xxx>mvn clean dependency:copy-dependencies -DoutputDirectory=lib
package

460 | 9.3. Environment construction

Next, open the Properties tab, set following contents, click [OK] and add Driver.

Any value can be set in Database Name. Other setting values are same as values set in batch-
application.properties.

Values set in Properties tab

Property Value

Connection URL jdbc:h2:~/batch-admin;AUTO_SERVER=TRUE

Database Name terasoluna-batch-tutorial

Driver Class org.h2.Driver

User ID sa

9.3. Environment construction | 461

Verify that Driver is added to configured details and click [Finish].

When Connection Profile is created, connection to H2 Database is displayed in Data Source Explorer
View.

462 | 9.3. Environment construction

Preparation to refer database from STS is now complete.
Settings of Data Source Explorer are verified in Verify operations of project.

9.3.7. Verify operations of project

Procedure to verify operations of project is shown below.

1. Execute job in STS

2. Refer a database by using Data Source Explorer

9.3.7.1. Execute job in STS

Procedure to execute job in STS is shown below.

1. Creating Run Configuration (Execution configuration)

2. Job execution and results verification

Regarding how to execute job

Originally, a job is executed from shell script etc., however, in this tutorial, it is
executed in STS for easy explanation.

9.3.7.1.1. Creating Run Configuration (Execution configuration)

How to create Run Configuration (execution configuration) using execution of sample job as an
example is explained.

9.3. Environment construction | 463

Select Java Application from STS menu - [Run] → [Run Configurations…] → List of types, right-click
→ select [New], display Run Configuration creation screen and set value given below.

Value set in Main tab of Run Configurations

Item name Value

Name Execute Job01
(Set any value)

Project terasoluna-batch-tutorial

Main class org.springframework.batch.core.launch.support.CommandLineJobR
unner

Next, open Arguments tab and set value given below.

Value to be set in Arguments tab of Run Configurations

Item name Value

Program arguments META-INF/jobs/job01.xml job01

464 | 9.3. Environment construction

Click [Apply] when settings are completed.

Value to be set while creating Run Configuration

Parameters same as command for Execution of sample job (Verify that it is created
successfully) are set in Run Configuration.
However, the class path is resolved automatically by STS while setting the project
to Project of Main tab.
Parameters should be changed according to the job to be executed, for the
parameters set in Run Configuration.
Note that, parameters of inputFile and outputFile are also required for the job
accessing the file.

9.3.7.1.2. Job execution and results verification

How to verify job execution and results is explained.
Verification of execution results for the job explained here include console log verification and exit
code verification for the job.

Use Debug View in this tutorial to verify exit code of job execution. How to display Debug View is
subsequently explained.

Reasons to display Debug View

If Debug View is not displayed in STS, it is not possible to verify exit code while
executing a job.
Result must be verified by displaying Debug View to convert the exit code of the
job by listener in Job which performs exception handling by try-catch.

At first, a method to execute job is explained.

Select Execute job created in Creating Run Configuration (Execution configuration) under Java
Application from STS menu - [Run] → [Run Configurations…] → Type list, click [Run] to execute the

9.3. Environment construction | 465

job.

Verify execution results of the job in console log.
Job is executed successfully if the display is as shown below.

Next, display Debug View and verify the exit code of job execution.

Select [Window] → [Show View] → [Other…] from STS menu, and click [OK] when Debug is selected
under Debug.

466 | 9.3. Environment construction

Debug is displayed on the workbench.

It can be verified that exit code of job execution is 0 by displaying <terminated, exit value: 0>.

When job execution fails in STS

When a job fails to execute in STS despite correct source code, there is a possibility
to successfully execute it by resolving the incomplete build state. the procedure is
shown below.
Select [project] → [clean] from STS menu.

9.3.7.2. Refer a database by using Data Source Explorer

A method to use database by using Data Source Explorer View is explained.

List of tables can be verified by opening the database BATCH-ADMIN in Data Source Explorer in
hierarchy as below.

9.3. Environment construction | 467

When Spring Batch metadata table (For details, refer metadata schema of JobRepository) and,
Preparation of input data for the job which inputs or outputs data by accessing a database are
implemented, verify that MEMBER_INFO table is created.

Next, records stored in the table can be referred by the method given below.

Right-click the table to be referred, select [Data] → [Edit] and you can refer a record stored in the
table in table format.
An example referring to BATCH_JOB_INSTANCE table is shown below.

468 | 9.3. Environment construction

You can see that a job called job01 is executed.

Environment construction tutorial is now complete.

9.3. Environment construction | 469

9.4. Implementation of batch job

9.4.1. A job which inputs or outputs data by accessing a database

9.4.1.1. Overview

Create a job which accesses a database.

Note that, since this section is explained based on TERASOLUNA Batch 5.x Development guideline,
refer database access for details.

Background, process overview and business specifications of Explanation of application to be
created are listed below.

9.4.1.1.1. Background

Some mass retail stores issue point cards to the members.
Membership types include "Gold members", "Normal members" and the services are provided
based on membership type.
As a part of the service, 100 points are added for "gold members" and 10 points are added for
"normal members" at the end of the month, for the members who have purchased a product during
that month.

9.4.1.1.2. Process overview

TERASOLUNA Batch 5.x will be using an application as a monthly batch process which adds points
based on membership type.

9.4.1.1.3. Business specifications

Business specifications are as shown below.

• When the product purchasing flag is "1"(process target), points are added based on membership
type

◦ Add 100 points when membership type is "G"(gold member), and add 10 points when
membership type is "N" (Normal member)

• * Product purchasing flag is updated to "0" (initial status) after adding points

• Upper limit of points is 1,000,000 points

• If the points exceed 1,000,000 points after adding points, they are adjusted to 1,000,000 points

9.4.1.1.4. Table specifications

Specifications of member information table acting as an input and output resource are as shown
below.

Member information table (member_info)

470 | 9.4. Implementation of batch job

N
o

Attribute
name

Column
name

PK Data type Numb
er of
digits

Explanation

1 Member ID id CHAR 8 Indicates a fixed 8 digit number which
uniquely identifies a member.

2 Membership
type

type - CHAR 1 Membership type is as shown below.
"G"(Gold member), "N"(Normal member)

3 Product
purchasing
flag

status - CHAR 1 Indicates whether you have purchased a
product in the month.
When the product is purchased, it is updated
to "1"(process target) and to "0"(initial status)
during monthly batch processing.

4 Point point - INT 7 Indicates points retained by the member.
Initial value is 0.

Regarding table specifications

Note that table design is not done in accordance with the actual implementation
considering the convenience of implementing this tutorial.

9.4.1.1.5. Job overview

Process flow and process sequence are shown below in order to understand the overview of job
which accesses database created here.

Process sequence covers the scope of transaction control. Transaction control for a job uses a
system containing Spring Batch which is explained by defining it as a framework transaction. For
details of transaction control, refer Transaction control.

Process flow overview

Overview of process flow is shown below.

9.4. Implementation of batch job | 471

Process flow of database access job

Process sequence in case of a chunk model

Process sequence in case of a chunk model is explained.

Orange object indicates a class to be implemented now.

472 | 9.4. Implementation of batch job

Sequence diagram of chunk model

Explanation of sequence diagram

1. Step is executed from the job.

2. Step opens a resource.

3. MyBatisCursorItemReader fetches all the member information from member_info table (issue
select statement).

◦ Repeat subsequent processes until input data is exhausted.

◦ Start a framework transaction in chunk units.

◦ Repeat the process from 4 to 10 until a chunk size is reached.

4. Step fetches 1 record of input data from MyBatisCursorItemReader.

5. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

6. member_info table returns input data to MyBatisCursorItemReader.

7. MyBatisCursorItemReader returns input data to step.

8. Step performs a process for input data by PointAddItemProcessor.

9. PointAddItemProcessor reads input data and adds points.

10. PointAddItemProcessor returns process results to the step.

9.4. Implementation of batch job | 473

11. Step outputs chunk size data by MyBatisBatchItemWriter.

12. MyBatisBatchItemWriter updates member information (issue update statement) for member_info
table.

13. Step commits framework transaction.

14. Step returns exit code (Here, normal termination:0) to the job.

Process sequence in case of a tasklet model

Process sequence in case of a tasklet model is explained.

In this tutorial, a method which is used in chunk model is adopted for tasklet model as well
wherein data for a certain number of fixed records are processed together in a batch. This method
enables efficient processing of a large amount of data. For details, refer Tasklet implementation
which use components of chunk model.

Orange coloured object indicates a class to be implemented now.

Sequence diagram of tasklet model

Explanation of sequence diagram

1. Step is executed from job.

◦ Step starts a framework transaction.

474 | 9.4. Implementation of batch job

2. Step executes PointAddTasklet.

3. PointAddTasklet opens a resource.

4. MyBatisCursorItemReader fetches all the member information from member_info table (issue
select statement).

◦ Repeat processes from 5 to 9 until input data is exhausted.

◦ Repeat processes from 5 to 11 until a certain number of records is reached.

5. PointAddTasklet fetches 1 record of input data from MyBatisCursorItemReader.

6. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

7. member_info table returns input data to MyBatisCursorItemReader.

8. MyBatisCursorItemReader returns input data to tasklet.

9. PointAddTasklet reads input data and adds points.

10. PointAddTasklet outputs data of certain records by MyBatisBatchItemWriter.

11. MyBatisBatchItemWriter updates member information (issue update statement) from
member_info table.

12. PointAddTasklet returns process termination to step.

13. Step commits a framework transaction.

14. Step returns an exit code (here, successful termination: 0) to the job.

How to implement in chunk model and tasklet model is subsequently explained.

• Implementation in chunk model

• Implementation in tasklet model

9.4.1.2. Implementation in chunk model

Processes from creation to execution for the job which accesses database in chunk model are
shown with the following procedures.

1. Creating job Bean definition file

2. Implementation of DTO

3. Defining database access by using MyBatis

4. Implementation of logic

5. Job execution and results verification

9.4.1.2.1. Creating job Bean definition file

How to combine the elements which configure the job which accesses database in the chunk model
is set in Bean definition file.
Frame and common settings of Bean definition file alone are described here and each configuration
element is set in subsequent sections.

9.4. Implementation of batch job | 475

src/main/resources/META-INF/jobs/dbaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- (1) -->
 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <!-- (2) -->
 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.chunk"/>

</beans>

Explanation

Sr. No. Explanation

(1) Always import settings to read required Bean definitions while using TERASOLUNA
Batch 5.x.

(2) Configure component scanning.
Specify a package containing component to be used (implementation class of
ItemProcessor etc.), in base-package attribute.

9.4.1.2.2. Implementation of DTO

Implement a DTO class as a class to retain business data.
Create a DTO class for each table.

Since it is used as common in chunk model / tasklet model, it can be skipped if created already.

476 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.common.dto.MemberInfoDTO

package org.terasoluna.batch.tutorial.common.dto;

public class MemberInfoDto {
 private String id; // (1)

 private String type; // (2)

 private String status; // (3)

 private int point; // (4)

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

 public int getPoint() {
 return point;
 }

 public void setPoint(int point) {
 this.point = point;
 }
}

Explanation

Sr. No. Explanation

(1) Define id as a field corresponding to member Id.

9.4. Implementation of batch job | 477

Sr. No. Explanation

(2) Define type as a field corresponding to membership type.

(3) Define status as a field corresponding to product purchasing flag.

(4) Define point as a field corresponding to points.

9.4.1.2.3. Defining database access by using MyBatis

Implementation and setting for database access using MyBatis.

Implement following processes.

1. Implementation of Repository interface

2. Creating MapperXML file

3. Configuring Job Bean definition file

Since it is used as common in chunk model / tasklet model, it can be skipped if created already.

Implementation of Repository interface

Implement an interface to call SQL which is defined in MapperXML.
Since the implementation class for the interface is automatically generated by MyBatis, the
developers are required to create only the interface.

org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository

package org.terasoluna.batch.tutorial.common.repository;

import org.terasoluna.batch.tutorial.common.dto.MemberInfoDto;
import java.util.List;

public interface MemberInfoRepository {
 List<MemberInfoDto> findAll(); // (1)

 int updatePointAndStatus(MemberInfoDto memberInfo); // (2)
}

Explanation

Sr. No. Explanation

(1) Define a method corresponding to ID of SQL defined in MapperXML file.
Here, define a method to fetch all the records from member_info table.

(2) Here, define a method to update point and status column of member_info table.

Creating MapperXML file

Create a MapperXML file which describes settings of SQL and O/R mapping.
MapperXML file is created for each Repository interface.

478 | 9.4. Implementation of batch job

It is possible to read MapperXML file automatically by storing it in a directory which is in
conformance with rules defined by MyBatis. Store Mapper file in the directory at the level same as
package level of Repository interface to enable reading MapperXML file automatically.

src/main/resources/org/terasoluna/batch/tutorial/common/repository/MemberInfoRepository.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<!-- (1) -->
<mapper
namespace="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository">

 <!-- (2) -->
 <select id="findAll"
resultType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto">
 SELECT
 id,
 type,
 status,
 point
 FROM
 member_info
 ORDER BY
 id ASC
 </select>

 <!-- (3) -->
 <update id="updatePointAndStatus"
parameterType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto">
 UPDATE
 member_info
 SET
 status = #{status},
 point = #{point}
 WHERE
 id = #{id}
 </update>
</mapper>

Explanation

Sr. No. Explanation

(1) Specify a fully qualified class name (FQCN) of Repository interface, in namespace
attribute of mapper element.

(2) Set SQL of reference system.
Here, set a SQL which fetches all the records from member_info table.

9.4. Implementation of batch job | 479

Sr. No. Explanation

(3) Set a SQL for update.
Here, set a SQL to update status and points for the records that match with id specified
in member_info table.

Configuring Job Bean definition file

Add following (1) to (3) to job Bean definition file as a setting to access the database by using
MyBatis.

480 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.chunk"/>

 <!-- (1) -->
 <mybatis:scan base-package="org.terasoluna.batch.tutorial.common.repository"
factory-ref="jobSqlSessionFactory"/>

 <!-- (2) -->
 <bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.findAl
l"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

 <!-- (3) -->
 <bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.up
datePointAndStatus"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

</beans>

Explanation

Sr. No. Explanation

(1) Configure to scan Repository interface.
Specify a base package which stores Repository interface, in base-package attribute.

9.4. Implementation of batch job | 481

Sr. No. Explanation

(2) Configure ItemReader.
Specify org.mybatis.spring.batch.MyBatisCursorItemReader provided by MyBatis-Spring -
a Spring linkage library offered by MyBatis, in class attribute. Use
MyBatisCursorItemReader to fetch a large amount of data from the database. For details,
refer Input.
Specify namespace+id for SQL set in MapperXML file, in queryId attribute.

(3) Configure ItemWriter.
Specify org.mybatis.spring.batch.MyBatisBatchItemWriter provided by MyBatis-Spring - a
Spring linkage library offered by MyBatis, in class attribute.
Specify namespace+id for SQL set in MapperXML file, in statementId attribute.

Accessing database other than ItemReader / ItemWriter

A method which uses Mapper interface is adopted as a method to access database
other than ItemReader or ItemWriter. Since restrictions are set as TERASOLUNA
Batch 5.x while using Mapper interface,
<Ch05_DBAccess.adoc#Ch05_DBAccess_HowToUse_Input_MapperInterface,
Mapper interface (Input)>> and Mapper interface (Output) should be referred. For
implementation example of ItemProcessor, refer How to use in chunk model
(Input) and How to use in chunk model(Output).

9.4.1.2.4. Implementation of logic

Implement a business logic class to add points.

Implement following processes.

1. Implementation of PointAddItemProcessor class

2. Configuring job Bean definition file

Implementation of PointAddItemProcessor class

Implement PointAddItemProcessor class which implements ItemProcessor interface.

482 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.dbaccess.chunk.PointAddItemProcessor

package org.terasoluna.batch.tutorial.dbaccess.chunk;

import org.springframework.batch.item.ItemProcessor;
import org.springframework.stereotype.Component;
import org.terasoluna.batch.tutorial.common.dto.MemberInfoDto;

@Component // (1)
public class PointAddItemProcessor implements ItemProcessor<MemberInfoDto,
MemberInfoDto> { // (2)

 private static final String TARGET_STATUS = "1"; // (3)

 private static final String INITIAL_STATUS = "0"; // (4)

 private static final String GOLD_MEMBER = "G"; // (5)

 private static final String NORMAL_MEMBER = "N"; // (6)

 private static final int MAX_POINT = 1000000; // (7)

 @Override
 public MemberInfoDto process(MemberInfoDto item) throws Exception { // (8) (9)
(10)
 if (TARGET_STATUS.equals(item.getStatus())) {
 if (GOLD_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 100);
 } else if (NORMAL_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 10);
 }

 if (item.getPoint() > MAX_POINT) {
 item.setPoint(MAX_POINT);
 }

 item.setStatus(INITIAL_STATUS);
 }

 return item;
 }
}

Explanation

Sr. No. Explanation

(1) Define a Bean by assigning @Component annotation to subject it to component scanning.

9.4. Implementation of batch job | 483

Sr. No. Explanation

(2) Implement ItemProcessor interface which specifies type of objects used in input and
output, in respective type argument.
Here, specify MemberInfoDTO created in Implementation of DTO along with objects used in
input and output.

(3) Define product purchasing flag: 1 for point addition, as a constant.
Originally, such a field constant is defined as a constant class and it is very rarely
defined in logic. It should be noted that it is defined as a constant for the sake of
convenience of this tutorial. (Applicable to subsequent constants as well)

(4) Define initial value of product purchasing flag:0, as a constant.

(5) Define membership type: G (gold member), as a constant.

(6) Define membership type: N (normal member), as a constant.

(7) Define upper limit of points: 1000000, as a constant.

(8) Define product purchasing flag, and business logic for adding points corresponding to
membership type.

(9) MemberInfoDTO - a type of output object specified by type argument of ItemProcessor
interface implemented by the class is the type used for return value.

(10) MemberInfoDTO - a type of input object specified by type argument of ItemProcessor
interface implemented by the class is the type used for item which is received as an
argument.

Configuring job Bean definition file

Add following (1) and subsequent objects to job Bean definition file in order to configure created
business logic as a job.

484 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.chunk"/>

 <mybatis:scan base-package="org.terasoluna.batch.tutorial.common.repository"
factory-ref="jobSqlSessionFactory"/>

 <bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.findAl
l"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

 <bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.up
datePointAndStatus"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

 <!-- (1) -->
 <batch:job id="jobPointAddChunk" job-repository="jobRepository">
 <batch:step id="jobPointAddChunk.step01"> <!-- (2) -->
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="pointAddItemProcessor"
 writer="writer" commit-interval="10"/> <!-- (3) -->
 </batch:tasklet>
 </batch:step>
 </batch:job>
</beans>

9.4. Implementation of batch job | 485

Explanation

Sr. No. Explanation

(1) Configure job.
id attribute must be unique within the scope of all the jobs included in 1 batch
application.
Here, jobPointAddChunk is specified as a job name of chunk model.

(2) Configure step.
It is not necessary to have a unique id attribute within the scope of all the jobs included
in 1 batch application, however a unique id is used to enable easy tracking at the time of
failure occurrence.
[step + Sr. No.] is added to id attribute specified in (1) unless for a specific reason
mentioned.
Here, specify jobPointAddChunk.step01 as a step name for the job of chunk model.

(3) Configure a chunk model job.
Specify Bean ID of ItemReader and ItemWriter defined in previous section, in respective
attributes of reader and writer.
Specify pointAddItemProcessor - a Bean ID of implementation class of ItemProcessor, in
processor attribute.+ Set number of input data records for 1 chunk as 10, in commit-
interval attribute.

commit-interval tuning

commit-interval is a tuning point for performance during a chunk model job.

It is set as 10 records in this tutorial, however, the appropriate number of records
vary depending on available machine resources and job characteristics. Process
throughput is likely to reach from 10 records to 100 records in case of a job which
processes data by accessing multiple resources. Alternately, if the input and output
resources are in 1:1 ratio and there are enough jobs to transfer data, process
throughput can reach 5000 to 10000 records as well.

It is advisable to temporarily place commit-interval to 100 records while
implementing a job and then perform tuning for each job in accordance with the
results of performance measurement.

9.4.1.2.5. Job execution and results verification

Execute created job on STS and verify results.

Execute job from execution configuration

Create execution configuration as below and execute job.
For how to create execution configuration, refer Verifying project operations.

Setting value for execution configuration

• Name: Any name (Example: Run DBAccessJob for ChunkModel)

• Main tab

◦ Project: terasoluna-batch-tutorial

486 | 9.4. Implementation of batch job

◦ Main class: org.springframework.batch.core.launch.support.CommandLineJobRunner

• Arguments tab

◦ Program arguments: META-INF/jobs/dbaccess/jobPointAddChunk.xml jobPointAddChunk

Verifying console log

Verify that logs are output to console for following details.

Console log output example

[2017/09/12 13:32:32] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddChunk]] completed with the following parameters:
[{jsr_batch_run_id=484}] and the following status: [COMPLETED]
[2017/09/12 13:32:32] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Tue Sep 12 13:32:29 JST 2017]; root of context hierarchy

Verifying exit code

Verify that the process has terminated successfully, using exit code.
For verification procedure, refer Job execution and results verification. Verify that the exit code
(exit value) is 0 (successful termination).

Verifying exit codes

Verifying member information table

Compare contents of member information table before and after update and verify that the
contents are in accordance with the verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• status column

◦ Records with "0"(initial status) should not exist

• point column

◦ Points are added according to membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

◦ Records exceeding 1,000,000 points (upper limit value) should not exist

9.4. Implementation of batch job | 487

Details of member information table before and after update are as shown below.

Details of member information table before and after update

9.4.1.3. Implementation in tasklet model

Processes from creation to execution of job which accesses database in tasklet model are
implemented by following procedures.

1. Creating job Bean definition file

2. Implementation of DTO

3. Defining database access by using MyBatis

4. Implementation of logic

5. Verifying execution of job and results

9.4.1.3.1. Creating job Bean definition file

How to combine elements constituting the job which access database in tasklet model is set in Bean
definition file.
Here, only frame and common settings of Bean definition file are described and each configuration
element is set in subsequent sections.

488 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddtasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- (1) -->
 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <!-- (2) -->
 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.tasklet"/>

</beans>

Explanation

Sr. No. Explanation

(1) Always import settings to read required Bean definitions while using TERASOLUNA
Batch 5.x.

(2) Configure component scanning.
Specify a package storing components to be used (implementation class of Tasklet etc), in
base-package attribute.

9.4.1.3.2. Implementation of DTO

Create a DTO class as a class to retain business data.
Create a DTO class for each table.

Since it is used as common in chunk model / tasklet model, it can be skipped if created already.

9.4. Implementation of batch job | 489

org.terasoluna.batch.tutorial.common.dto.MemberInfoDTO

package org.terasoluna.batch.tutorial.common.dto;

public class MemberInfoDto {
 private String id; // (1)

 private String type; // (2)

 private String status; // (3)

 private int point; // (4)

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

 public int getPoint() {
 return point;
 }

 public void setPoint(int point) {
 this.point = point;
 }
}

Explanation

Sr. No. Explanation

(1) Define id as a field which corresponds to member id.

490 | 9.4. Implementation of batch job

Sr. No. Explanation

(2) Define type as a field which corresponds to membership type.

(3) Define status as a field which corresponds to product purchasing flag.

(4) Define point as a field corresponding to points.

9.4.1.3.3. Defining database access by using MyBatis

Implement and configure to access database by using MyBatis.

Implement following operations.

1. Implementation of Repository interface

2. Creating MapperXML file

3. Setting job Bean definition file

Since it is used as common in chunk model / tasklet model, it can be skipped if created already.

Implementation of Repository interface

Create an interface to call SQL which is defined in MapperXML file.
Since implementation class for the interface is automatically generated by MyBatis, the developer
only needs to create an interface.

org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository

package org.terasoluna.batch.tutorial.common.repository;

import org.terasoluna.batch.tutorial.common.dto.MemberInfoDto;
import java.util.List;

public interface MemberInfoRepository {
 List<MemberInfoDto> findAll(); // (1)

 int updatePointAndStatus(MemberInfoDto memberInfo); // (2)
}

Explanation

Sr. No. Explanation

(1) Define a method corresponding to ID of SQL which is defined in MapperXML file.
Here, a method is defined to fetch all the records from member_info table.

(2) Here, define a method to update point column and status column of member_info table.

Creating MapperXML file

Create a MapperXML file which describes settings of SQL and O/R mapping.
Create MapperXML file for each Repository interface.

9.4. Implementation of batch job | 491

MapperXML file can be read automatically by storing it in a directory which is in conformance with
the rules defined by MyBatis. Store MapperXML file in the directory at the level same as package
layer of Repository interface to enable reading of MapperXML file automatically.

src/main/resources/org/terasoluna/batch/tutorial/common/repository/MemberInfoRepository.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<!-- (1) -->
<mapper
namespace="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository">

 <!-- (2) -->
 <select id="findAll"
resultType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto">
 SELECT
 id,
 type,
 status,
 point
 FROM
 member_info
 ORDER BY
 id ASC
 </select>

 <!-- (3) -->
 <update id="updatePointAndStatus"
parameterType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto">
 UPDATE
 member_info
 SET
 status = #{status},
 point = #{point}
 WHERE
 id = #{id}
 </update>
</mapper>

Explanation

Sr. No. Explanation

(1) Specify fully qualified class name (FQCN) of Repository interface, in namespace attribute
of mapper element.

(2) Define reference SQL.
Here, configure SQL to fetch all the records from member_info table.

492 | 9.4. Implementation of batch job

Sr. No. Explanation

(3) Define update SQL.
Here, set SQL to update status and point for the records that match with specified id of
member_info table.

Setting job Bean definition file

Add following (1) ~ (3) to job Bean definition file as a setting to access database by using MyBatis.

9.4. Implementation of batch job | 493

src/main/resources/META-INF/jobs/dbaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.tasklet"/>

 <!-- (1) -->
 <mybatis:scan base-package="org.terasoluna.batch.tutorial.common.repository"
factory-ref="jobSqlSessionFactory"/>

 <!-- (2) -->
 <bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.findAl
l"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

 <!-- (3) -->
 <bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.up
datePointAndStatus"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

</beans>

Explanation

Sr. No. Explanation

(1) Configure to scan Repository interface.
Specify a base package which stores Repository interface, in base-package attribute.

494 | 9.4. Implementation of batch job

Sr. No. Explanation

(2) Configure ItemReader.
Specify org.mybatis.spring.batch.MyBatisCursorItemReader provided by Spring linkage
library - MyBatis-Spring provided by MyBatis, in class attribute.
Specify namespace+id of SQL set in MapperXML file, in queryId attribute.

(3) Configure ItemWriter.
Specify org.mybatis.spring.batch.MyBatisBatchItemWriter provided by MyBatis-Spring -
Spring linkage library provided by MyBatis, in class attribute.
Specify namespace+id of SQL set in MapperXML file, in statementId attribute.

Tasklet implementation which use components of chunk model

In this tutorial, ItemReader . ItemWriter - components of chunk model are used in
order to easily create a job which accesses database in the tasklet model.

Refer Tasklet implementation which use components of chunk model and
determine appropriately for whether to use various components of chunk model
during Tasklet implementation.

Accessing database other than ItemReader and ItemWriter

A method which use Mapper interface is adopted as a method to access database
other than ItemReader and ItemWriter. Since restrictions are set as TERASOLUNA
Batch 5.x while using Mapper interface, Mapper interface (Input) and Mapper
interface (Output) should be referred. For implementation example of Tasklet,
refer How to use in tasklet model(Input) and How to use in tasklet model(Output).

9.4.1.3.4. Implementation of logic

Implement a business logic class which adds points.

Implement following operations.

1. Implementation of PointAddTasklet class

2. Configuring job Bean definition file

Implementation of PointAddTasklet class

Implement PointAddTasklet class which implements Tasklet interface.

org.terasoluna.batch.tutorial.dbaccess.tasklet.PointAddTasklet

package org.terasoluna.batch.tutorial.dbaccess.tasklet;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.ItemStreamReader;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.repeat.RepeatStatus;

9.4. Implementation of batch job | 495

import org.springframework.stereotype.Component;
import org.terasoluna.batch.tutorial.common.dto.MemberInfoDto;

import javax.inject.Inject;
import java.util.ArrayList;
import java.util.List;

@Component // (1)
public class PointAddTasklet implements Tasklet {

 private static final String TARGET_STATUS = "1"; // (2)

 private static final String INITIAL_STATUS = "0"; // (3)

 private static final String GOLD_MEMBER = "G"; // (4)

 private static final String NORMAL_MEMBER = "N"; // (5)

 private static final int MAX_POINT = 1000000; // (6)

 private static final int CHUNK_SIZE = 10; // (7)

 @Inject // (8)
 ItemStreamReader<MemberInfoDto> reader; // (9)

 @Inject // (8)
 ItemWriter<MemberInfoDto> writer; // (10)

 @Override
 public RepeatStatus execute(StepContribution contribution, ChunkContext
chunkContext) throws Exception { // (11)
 MemberInfoDto item = null;

 List<MemberInfoDto> items = new ArrayList<>(CHUNK_SIZE); // (12)

 try {
 reader.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext()); // (13)

 while ((item = reader.read()) != null) { // (14)

 if (TARGET_STATUS.equals(item.getStatus())) {
 if (GOLD_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 100);
 } else if (NORMAL_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 10);
 }

 if (item.getPoint() > MAX_POINT) {
 item.setPoint(MAX_POINT);
 }

496 | 9.4. Implementation of batch job

 item.setStatus(INITIAL_STATUS);
 }

 items.add(item);

 if (items.size() == CHUNK_SIZE) { // (15)
 writer.write(items); // (16)
 items.clear();
 }
 }

 writer.write(items); // (17)
 } finally {
 reader.close(); // (18)
 }

 return RepeatStatus.FINISHED; // (19)
 }
}

Explanation

Sr. No. Explanation

(1) Define a Bean by assigning @Component annotation in order to subject it to component
scanning.

(2) Define product purchasing flag:1 as a constant, for point addition.
Originally, a field constant is defined as a constant class and it is rarely defined in the
logic. It is defined as a constant for the sake of convenience of this tutorial. (Same is
applicable to subsequent constants)

(3) Define initial value of product purchasing flag = 0, as a constant.

(4) Define membership type:G (gold member), as a constant.

(5) Define membership type:N (normal member), as a constant.

(6) Define upper limit of points:1000000, as a constant.

(7) Define a unit (fixed records): 10 to be processed together.

(8) Assign @Inject annotation and inject ItemStreamReader/ItemWriter implementation.

(9) Define the type as ItemStreamReader - a sub-interface of ItemReader to access database.
ItemStreamReader is required to open / close a resource.

(10) Define ItemWriter.
Unlike ItemStreamReader, it is not necessary to open/close a resource.

(11) Implement a product purchasing flag, and business logic which adds points according to
membership type.

(12) Define a list to store item of fixed records.

9.4. Implementation of batch job | 497

Sr. No. Explanation

(13) Open an input resource.
A SQL is issued within this timing.

(14) Process all input resource records sequentially.
ItemReader#read returns null when all the input data has been read.

(15) Determine whether number of item added to the list has reached a certain number of
records.
When it reaches a certain number, output it to database in (16) and clear the list.

(16) Output to database.
It must be noted that it is not committed at this time.

(17) Output all process records and remaining records to database.

(18) Close resource.
Note that, exception handling is not implemented here for the ease of implementation.
Implement exception handling when necessary.
When an exception occurs, transaction of entire tasklet is rolled back, stack trace of the
exception is output and job is terminated abnormally.

(19) Return whether the processing of Tasklet is completed.
Always specify return RepeatStatus.FINISHED;.

Configuring job Bean definition file

Add following (1) and subsequent objects to job Bean definition file to set the created business logic
as a job.

498 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.tasklet"/>

 <mybatis:scan base-package="org.terasoluna.batch.tutorial.common.repository"
factory-ref="jobSqlSessionFactory"/>

 <bean id="reader"
 class="org.mybatis.spring.batch.MyBatisCursorItemReader"

p:queryId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.findAl
l"
 p:sqlSessionFactory-ref="jobSqlSessionFactory"/>

 <bean id="writer" class="org.mybatis.spring.batch.MyBatisBatchItemWriter"

p:statementId="org.terasoluna.batch.tutorial.common.repository.MemberInfoRepository.up
datePointAndStatus"
 p:sqlSessionTemplate-ref="batchModeSqlSessionTemplate"/>

 <!-- (1) -->
 <batch:job id="jobPointAddTasklet" job-repository="jobRepository">
 <batch:step id="jobPointAddTasklet.step01"> <!-- (2) -->
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="pointAddTasklet"/> <!-- (3) -->
 </batch:step>
 </batch:job>
</beans>

Explanation

9.4. Implementation of batch job | 499

Sr. No. Explanation

(1) Configure job.
id attribute should be unique within the scope of all the jobs included in 1 batch
application.
Here, jobPointAddTasklet is specified as a job name of tasklet model.

(2) Configure step.
It is not necessary to have a unique id attribute within the scope of all the jobs included
in 1 batch application, however a unique id is used to enable easy tracking at the time of
occurrence of a failure.
Add [step + Sr. No.] to id specified in (1) unless for a specific reason.
Here, specify jobPointAddTasklet.step01 as a step name of job for tasklet model.

(3) Configure tasklet.
Specify pointAddTasklet - a Bean ID of implementation class of Tasklet, in ref attribute.

9.4.1.3.5. Verifying execution of job and results

Execute the created job on STS and verify results.

Execute job from execution configuration

Create execution configuration as below and execute job.
For how to create execution configuration, refer Verify project operations.

Setup value of execution configuration

• Name: Any name (Example: Run DBAccessJob for TaskletModel)

• Main tab

◦ Project: terasoluna-batch-tutorial

◦ Main class: org.springframework.batch.core.launch.support.CommandLineJobRunner

• Arguments tab

◦ Program arguments: META-INF/jobs/dbaccess/jobPointAddTasklet.xml jobPointAddTasklet

Verifying console log

Verify that following details are output in Console.

Console log output example

[2017/09/12 10:09:56] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddTasklet]] completed with the following parameters:
[{jsr_batch_run_id=472}] and the following status: [COMPLETED]
[2017/09/12 10:09:56] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Tue Sep 12 10:09:54 JST 2017]; root of context hierarchy

500 | 9.4. Implementation of batch job

Verifying exit codes

Verify that the process has terminated successfully, by exit codes.
For verification procedure, refer Job execution and results verification. Verify that the exit code
(exit value) is 0 (Successful termination).

Verifying exit codes

Verifying member information table

Compare contents of member information table before and after update, and verify that the
contents are in accordance with the verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• status column

◦ Records with "0"(initial status) should not exist

• point column

◦ Points should be added in accordance with membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

◦ Records exceeding 1,000,000 points (upper limit) should not exist

Contents of member information table before and after update are as shown below.

9.4. Implementation of batch job | 501

Contents of member information table before and after update

502 | 9.4. Implementation of batch job

9.4.2. A job which inputs or outputs data by accessing a file

9.4.2.1. Overview

Create a job which inputs or outputs data by accessing a file.

Note that, since this section is explained based on TERASOLUNA Batch 5.x Development guideline,
refer File access for details.

Background, process overview and business specifications of Explanation of application to be
created are listed below.

9.4.2.1.1. Background

Some mass retail stores issue point cards for members.
Membership types include "Gold member", "Normal member" and the services are provided based
on membership type.
As a part of the service, 100 points are added for "gold members" and 10 points are added for
"normal members" at the end of the month, for the members who have purchased a product during
that month.

9.4.2.1.2. Process overview

TERASOLUNA Batch 5.x will be using an application as a monthly batch process which adds points
based on the membership type.

9.4.2.1.3. Business specifications

Business specifications are as given below.

• When the product purchasing flag is "1"(process target), points are added based on membership
type

◦ Add 100 points when membership type is "G"(gold member) and add 10 points when
membership type is "N"(Normal member)

• Product purchasing flag is updated to "0" (initial status) after adding points

• Upper limit of points is 1,000,000 points

• If the points exceed 1,000,000 points after adding points, they are adjusted to 1,000,000 points

9.4.2.1.4. File specifications

Specifications of member information file which acts as an input and output resource are shown
below.

Member information file (Variable length CSV format)

No Field name Data type Number
of digits

Explanation

1 Member Id Character
string

8 Indicates a fixed 8 digit number which uniquely
identifies a member.

9.4. Implementation of batch job | 503

No Field name Data type Number
of digits

Explanation

2 Membership type Character
string

1 Membership type is as shown below.
"G"(Gold member), "N"(Normal member)

3 Product
purchasing flag

Character
string

1 It shows whether you have purchased a product
in the month.
It is updated to "1" (process target) when the
product is purchased and to "0" (initial status)
during monthly batch process.

4 Points Numeric
value

7 It shows the points retained by the members.
Initial value is 0.

Since header records and footer records are not being handled in this tutorial, refer File access for
handling of header and footer record and file formats.

9.4.2.1.5. Job overview

Process flow and process sequence are shown below to understand the overview of the job which
inputs or outputs data by accessing file created here.

The process sequence mentions the scope of transaction control, however, the operation is achieved
by performing pseudo transaction control in case of a file. For details, refer to Supplement for non-
transactional data sources.

Process flow overview

Process flow overview is shown below.

504 | 9.4. Implementation of batch job

Process flow for file access job

Process sequence in case of a chunk model

Process sequence in case of a chunk model is explained.

Orange object represents a class to be implemented this time.

9.4. Implementation of batch job | 505

Sequence diagram of chunk model

Explanation of sequence diagram

1. A step is executed from the job.

2. Step opens the input resource.

3. FlatFileItemReader opens member_info(input) file.

4. Step opens an output resource.

5. FlatFileItemWriter opens member_info(output) file.

◦ Repeat process from steps 6 to 16 until input data gets exhausted.

◦ Start a framework transaction (pseudo) in chunk units.

◦ Repeat process from steps 6 to 12 until a chunk size is achieved.

506 | 9.4. Implementation of batch job

6. Step fetches 1 record of input data from FlatFileItemReader.

7. FlatFileItemReader fetches 1 record of input data from member_info(input) file.

8. member_info(input) file returns input data to FlatFileItemReader.

9. FlatFileItemReader returns input data to step.

10. Step performs a process for input data by PointAddItemProcessor.

11. PointAddItemProcessor reads input data and adds points.

12. PointAddItemProcessor returns process results to the step.

13. Step outputs chunk size data by FlatFileItemWriter.

14. FlatFileItemWriter buffers process results.

15. Step commits framework transaction (pseudo).

16. FlatFileItemWriter performs data flush and writes data in the buffer to member_info(output)
file.

17. Step closes the input resource.

18. FlatFileItemReader closes member_info(input) file.

19. Step closes output resource.

20. FlatFileItemWriter closes member_info(output) file.

21. Step returns the exit code (here, successful completion: 0) to job.

Process sequence in case of a tasklet model

Process sequence in case of a tasklet model is explained.

Orange object represents a class to be implemented this time.

9.4. Implementation of batch job | 507

Sequence diagram of tasklet model

Explanation of sequence diagram

1. Step is executed from the job.

◦ Step starts a framework transaction (pseudo).

2. Step executes PointAddTasklet.

3. PointAddTasklet opens an input resource.

4. FlatFileItemReader opens a member_info(input) file.

5. PointAddTasklet opens an output resource.

6. FlatFileItemWriter opens a member_info(output) file.

◦ Repeat the process from steps 7 to 13 until the input data gets exhausted.

◦ Repeat the process from steps 7 to 11 until a certain number of records is reached.

508 | 9.4. Implementation of batch job

7. PointAddTasklet fetches 1 record of input data from FlatFileItemReader.

8. FlatFileItemReader fetches 1 record of input data from member_info(input) file.

9. member_info(input) file returns input data to FlatFileItemReader.

10. FlatFileItemReader returns input data to tasklet.

11. PointAddTasklet reads input data and adds points.

12. PointAddTasklet outputs a certain number of records by FlatFileItemWriter.

13. FlatFileItemWriter buffers the process results.

14. PointAddTasklet closes the input resource.

15. FlatFileItemReader closes member_info(input) file.

16. PointAddTasklet closes output resource.

17. PointAddTasklet returns termination of process to step.

18. Step commits framework transaction (pseudo).

19. FlatFileItemWriter performs data flush and write the data in the buffer to member_info(output)
file.

20. FlatFileItemWriter closes member_info(output) file.

21. Step returns exit code (here, successful completion:0).

How to implement a chunk model and a tasklet model respectively is explained subsequently.

• Implementation in chunk model

• Implementation in tasklet model

9.4.2.2. Implementation in chunk model

Creation of a job which inputs or outputs data by accessing a file in chunk model, till execution of
job are implemented by following procedure.

1. Creating a job Bean definition file

2. DTO implementation

3. Defining file access

4. Implementation of logic

5. Job execution

9.4.2.2.1. Creating a job Bean definition file

In Bean definition file, configure a way to combine elements which constitute a job that
inputs/outputs data by accessing a file in chunk model.
In this example, only the frame and common settings of Bean definition file are described and each
component is configured in the subsequent sections.

9.4. Implementation of batch job | 509

src/main/resources/META-INF/jobs/fileaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <!-- (1) -->
 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <!-- (2) -->
 <context:component-scan base-
package="org.terasoluna.batch.tutorial.fileaccess.chunk"/>

</beans>

Explanation

Sr. No. Explanation

(1) Import a configuration that always reads required Bean definition while using
TERASOLUNA Batch 5.x.

(2) Configure the base package to be subjected for the component scanning.
Specify a package wherein a component to be used (implementation class of
ItemProcessor etc) is stored, in base-package attribute.

9.4.2.2.2. DTO implementation

Implement DTO class as a class to retain business data.
Create DTO class for each file.

Since it is used in common for chunk model / tasklet model, it can be skipped if it is created already.

Implement DTO class as a class for conversion, as shown below.

510 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.common.dto.MemberInfoDTO

package org.terasoluna.batch.tutorial.common.dto;

public class MemberInfoDto {
 private String id; // (1)

 private String type; // (2)

 private String status; // (3)

 private int point; // (4)

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

 public int getPoint() {
 return point;
 }

 public void setPoint(int point) {
 this.point = point;
 }
}

Explanation

Sr. No. Explanation

(1) Define id as a field that corresponds to member ID.

9.4. Implementation of batch job | 511

Sr. No. Explanation

(2) Define type as a field that corresponds to membership type.

(3) Define status as a field that corresponds to product purchasing flag.

9.4.2.2.3. Defining file access

Configure a job Bean definition file in order to input/output data by accessing a file.

Add following (1) and subsequent details to job Bean definition file as a setting of ItemReader and
ItemWriter.
For the configuration details not covered here, refer Variable length record input and Variable
length record output.

src/main/resources/META-INF/jobs/fileaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.fileaccess.chunk"/>

 <!-- (1) (2) -->
 <bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="UTF-8"
 p:strict="true">
 <property name="lineMapper">
 <bean
class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer"> <!-- (3) -->
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="id,type,status,point"
 p:delimiter=","
 p:quoteCharacter='"'/> <!-- (4) (5) -->
 </property>

512 | 9.4. Implementation of batch job

 <property name="fieldSetMapper"> <!-- (6) -->
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto"/>
 </property>
 </bean>
 </property>
 </bean>

 <!-- (7) (8) -->
 <bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="UTF-8"
 p:lineSeparator="
"
 p:appendAllowed="false"
 p:shouldDeleteIfExists="true"
 p:transactional="true">
 <property name="lineAggregator"> <!-- (9) -->
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator"
 p:delimiter=","> <!-- (10) -->
 <property name="fieldExtractor"> <!-- (11) -->
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="id,type,status,point"/> <!-- (12) -->
 </property>
 </bean>
 </property>
 </bean>

</beans>

Explanation

Sr. No. Explanation

(1) Configure ItemReader.
Specify org.springframework.batch.item.file.FlatFileItemReader which is an
implementation class of ItemReader in class attribute, in order to read flat file offered by
Spring Batch.
Specify step scope in scope attribute.

(2) Specify path of input file in resource attribute.
Although the path can be specified directly, the parameter name of input file path is
specified here in order to pass it by parameter at the time of starting the job.

9.4. Implementation of batch job | 513

Sr. No. Explanation

(3) Configure lineTokenizer.
Specify org.springframework.batch.item.file.transform.DelimitedLineTokenizer - an
implementation class of LineTokenizer in class attribute, which divides the records by
specifying a delimiter offered by Spring Batch.
It supports reading of escaped line feed character, delimiter and enclosed character,
defined in the specifications of RFC-4180 which is considered as a general CSV format.

(4) Set the name to be assigned to each field of 1 record, in names attribute.
Each field can be retrieved by using the name set in FieldSet used in FieldSetMapper.
Specify each name with a comma delimiter from the beginning of the record.

(5) Specify the comma as a delimiter in delimiter attribute.

(6) Set fieldSetMapper.
Since special conversions like character strings and numbers are not required at the
moment, specify
org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper, in class
attribute.
Specify DTO class created by DTO implementation as a class for conversion, in
targetType attribute. Accordingly, an instance is generated wherein a value is
automatically set in the field that matches with name of each field set in (4).

(7) Set ItemWriter.
Specify org.springframework.batch.item.file.FlatFileItemWriter - an implementation
class of ItemWriter, in class attribute in order to write to the flat file offered by Spring
Batch.
Specify step scope in the scope attribute.
In this tutorial, set appendAllowed attribute to false(do not write) and
shouldDeleteIfExists attribute to true(delete existing file) and ensure to create a new file
no matter how many times a job is to be executed.
Enable pseudo transaction control by specifying transactional attribute to true.

(8) Set path of output file in resource attribute.
Parameter name of output file path is specified so that it can be passed by parameter at
the start of the job.

(9) Set lineAggregator.
Specify org.springframework.batch.item.file.transform.LineAggregator to map the target
Bean in 1 record, in class attribute.
Map the property of the Bean and each field in the record by FieldExtractor.

(10) Specify the comma as a delimiter, in delimiter attribute.

(11) Set fieldExtractor.
Map the value that matches with the field of DTO class specified in (6) to the name of
each field to be specified in (12).
Specify org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor in
class attribute.

(12) Specify the name assigned to each field of 1 record, in names attribute.

9.4.2.2.4. Implementation of logic

Implement business logic class which adds the points.

514 | 9.4. Implementation of batch job

Implement following operations.

1. Implementation of PointAddItemProcessor class

2. Configuring Job Bean definition file

Implementation of PointAddItemProcessor class

Implement PointAddItemProcessor class which implements ItemProcessor interface.

9.4. Implementation of batch job | 515

org.terasoluna.batch.tutorial.fileaccess.chunk.PointAddItemProcessor

package org.terasoluna.batch.tutorial.fileaccess.chunk;

import org.springframework.batch.item.ItemProcessor;
import org.springframework.stereotype.Component;
import org.terasoluna.batch.tutorial.common.dto.MemberInfoDto;

@Component // (1)
public class PointAddItemProcessor implements ItemProcessor<MemberInfoDto,
MemberInfoDto> { // (2)

 private static final String TARGET_STATUS = "1"; // (3)

 private static final String INITIAL_STATUS = "0"; // (4)

 private static final String GOLD_MEMBER = "G"; // (5)

 private static final String NORMAL_MEMBER = "N"; // (6)

 private static final int MAX_POINT = 1000000; // (7)

 @Override
 public MemberInfoDto process(MemberInfoDto item) throws Exception { // (8) (9)
(10)
 if (TARGET_STATUS.equals(item.getStatus())) {
 if (GOLD_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 100);
 } else if (NORMAL_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 10);
 }

 if (item.getPoint() > MAX_POINT) {
 item.setPoint(MAX_POINT);
 }

 item.setStatus(INITIAL_STATUS);
 }

 return item;
 }
}

Explanation

Sr. No. Explanation

(1) Define a Bean by assigning @Component annotation so as to subject it to component
scanning.

516 | 9.4. Implementation of batch job

Sr. No. Explanation

(2) Implement ItemProcessor interface which specifies the type of object used for
input/output, in respective type argument.
Specify MemberInfoDTO created by both DTO implementation for the objects used in
input/output here.

(3) Define a product purchasing flag:1 for the addition of points, as a constant
Essentially, these field constants are defined in constant classes and are not defined in
the logic. It should be noted that it is defined as a constant for the sake of convenience,
in this tutorial. (Same applies to following constants)

(4) Define initial value of product purchasing flag:0 as a constant.

(5) Define membership type:G (gold member), as a constant.

(6) Define membership type:N (normal member),as a constant.

(7) Define the upper limit value of points:1000000, as a constant.

(8) Implement product purchasing flag and, business logic to add points according to
membership type.

(9) Type of return value is MemberInfoDTO - a type of output object specified by the type
argument of ItemProcessor interface implemented by this class.

(10) Type of item received as an argument is MemberInfoDTO - a type of input object specified
by type argument of ItemProcessor interface implemented by this class.

Configuring Job Bean definition file

Add following (1) and subsequent objects to job Bean definition file in order to set the created
business logic as a job.

src/main/resources/META-INF/jobs/fileaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.fileaccess.chunk"/>

 <bean id="reader"

9.4. Implementation of batch job | 517

 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="UTF-8"
 p:strict="true">
 <property name="lineMapper">
 <bean
class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="id,type,status,point"
 p:delimiter=","
 p:quoteCharacter='"'/>
 </property>
 <property name="fieldSetMapper">
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto"/>
 </property>
 </bean>
 </property>
 </bean>

 <bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="UTF-8"
 p:lineSeparator="
"
 p:appendAllowed="false"
 p:shouldDeleteIfExists="true"
 p:transactional="true">
 <property name="lineAggregator">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator"
 p:delimiter=",">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="id,type,status,point"/>
 </property>
 </bean>
 </property>
 </bean>

 <!-- (1) -->
 <batch:job id="jobPointAddChunk" job-repository="jobRepository">
 <batch:step id="jobPointAddChunk.step01"> <!-- (2) -->
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="pointAddItemProcessor"

518 | 9.4. Implementation of batch job

 writer="writer" commit-interval="10"/> <!-- (3) -->
 </batch:tasklet>
 </batch:step>
 </batch:job>
</beans>

Explanation

Sr. No. Explanation

(1) Set the job.
id attribute must be unique within the range of all jobs included in 1 batch application.
Here, specify jobPointAddChunk as a job name of chunk model.

(2) Configure step.
Although it is not necessary to have a id attribute unique within the range of all jobs
included in 1 batch application, it should be taken as unique to enable easy tracking at
the time of failure.
The format consists of [step + serial number] for the id attribute specified in (1) unless
there is a specific reason.
Here, specify jobPointAddChunk.step01 as a step name for chunk model job.

(3) Configure chunk model job.
Specify Bean ID of ItemReader and ItemWriter defined in the previous section, in
respective reader and writer attributes.
Specify pointAddItemProcessor - a Bean ID of implementation class of ItemProcessor, in
processor attribute.
Set 10 as input data count per chunk, in commit-interval attribute.

Tuning of commit-interval

commit-interval is a tuning point for performance in the chunk model job.

In this tutorial, it is set to 10, however the appropriate number varies depending
on available machine resources and job characteristics. In case of the jobs which
access multiple resources and process the data, process throughput can reach to
100 records from 10 records. On the other hand, when input and output resources
are in 1:1 ratio and there are enough jobs to transfer data, process throughout can
reach to 5,000 cases or 10,000 cases.

It is preferable to temporarily place commit-interval at the time of 100 records
while starting a job and then tune for each job according to performance
measurement results implemented subsequently.

9.4.2.2.5. Job execution

Execute the created job on IDE and verify the results.

Executing job from execution configuration

Create execution configuration as below and execute job.
For how to create execution configuration, refer Operation check.

9.4. Implementation of batch job | 519

Here, the job is executed by using normal system data.
Parameters of input and output file are added to Arguments tab as arguments.

Execution configuration setting value

• Name: Any name (Example: Run FileAccessJob for ChunkModel)

• Main tab

◦ Project: terasoluna-batch-tutorial

◦ Main class: org.springframework.batch.core.launch.support.CommandLineJobRunner

• Arguments tab

◦ Program arguments: META-INF/jobs/fileaccess/jobPointAddChunk.xml jobPointAddChunk
inputFile=files/input/input-member-info-data.csv outputFile=files/output/output-
member-info-data.csv

Verifying console log

Verify that the log with following details is output to Console.

Example of console log output

[2017/08/18 11:09:19] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddChunk]] completed with the following parameters:
[{inputFile=files/input/input-member-info-data.csv, outputFile=files/output/output-
member-info-data.csv, jsr_batch_run_id=386}] and the following status: [COMPLETED]
[2017/08/18 11:09:19] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Fri Aug 18 11:09:12 JST 2017]; root of context hierarchy

Verifying exit code

Verify that the process is executed successfully by using exit codes.
For verification procedure, refer Job execution and results verification. Verify that the exit code
(exit value) is 0 (successful termination).

Verifying exit codes

Verifying member information file

Compare input and output contents of member information file and verify that they are in
accordance with the verification details.

Verification details

• Member information file should be output in the output directory

520 | 9.4. Implementation of batch job

◦ Output file: files/output/output-member-info-data.csv

• status field

◦ Records with value "0"(initial status) should not exist

• point field

◦ Points should be added according to membership type, for point addition

▪ 100 points when the type field is "G"(gold member)

▪ 10 points when the type field is "N"(normal member)

◦ Records with points exceeding 1,000,000 points (upper limit) should not exist

The input/output details of member information file are as follows.
The file fields are displayed in the sequence of id(Member id), type(Membership type), status
(Product purchasing flag) and point(Points).

Input/output details of member information file

9.4.2.3. Implementation in tasklet model

Implement the procedure from creation to execution of job which inputs and outputs data by
accessing a file in tasklet model.

1. Creating job Bean definition file

2. Implementation of DTO

3. Defining file access

4. Implementation of logic

5. Job executio

9.4. Implementation of batch job | 521

9.4.2.3.1. Creating job Bean definition file

How to combine elements which constitute a job performing data input and output by accessing a
file in Tasklet model, is configured in Bean definition file.
Here, only frame and common settings of Bean definition file are described, and set each
configuration element in the following sections

src/main/resources/META-INF/jobs/fileaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <!-- (1) -->
 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <!-- (2) -->
 <context:component-scan base-
package="org.terasoluna.batch.tutorial.fileaccess.tasklet"/>

</beans>

Explanation

Sr. No. Explanation

(1) Always import settings for reading required Bean definition while using TERASOLUNA
Batch 5.x.

(2) Specify a package which stores the components to be used (implementation class of
Tasklet etc), in base-package attribute.

9.4.2.3.2. Implementation of DTO

Implement a DTO class as a class to retain business data.
Create a DTO class for each file.

Since it is used as a common in chunk model / tasklet model, it can be skipped if created already.

Implement DTO class as a class for conversion as shown below.

522 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.common.dto.MemberInfoDTO

package org.terasoluna.batch.tutorial.common.dto;

public class MemberInfoDto {
 private String id; // (1)

 private String type; // (2)

 private String status; // (3)

 private int point; // (4)

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

 public int getPoint() {
 return point;
 }

 public void setPoint(int point) {
 this.point = point;
 }
}

Explanation

Sr. No. Explanation

(1) Define id as a field corresponding to member id.

9.4. Implementation of batch job | 523

Sr. No. Explanation

(2) Define type as a field corresponding to membership type.

(3) Define status as a field corresponding product purchasing flag.

(4) Define point as a field corresponding to points.

9.4.2.3.3. Defining file access

Configure a job Bean definition file to input and output data by accessing a file.

Add following (1) and subsequent objects to job Bean definition file as a setting of ItemReader and
ItemWriter.
For the setting details not covered here, refer Variable length record input and Variable length
record output.

src/main/resources/META-INF/jobs/fileaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.fileaccess.chunk"/>

 <!-- (1) (2) -->
 <bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="UTF-8"
 p:strict="true">
 <property name="lineMapper">
 <bean
class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer"> <!-- (3) -->
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="id,type,status,point"
 p:delimiter=","
 p:quoteCharacter='"'/> <!-- (4) (5) -->

524 | 9.4. Implementation of batch job

 </property>
 <property name="fieldSetMapper"> <!-- (6) -->
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto"/>
 </property>
 </bean>
 </property>
 </bean>

 <!-- (7) (8) -->
 <bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="UTF-8"
 p:lineSeparator="
"
 p:appendAllowed="false"
 p:shouldDeleteIfExists="true"
 p:transactional="true">
 <property name="lineAggregator"> <!-- (9) -->
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator"
 p:delimiter=","> <!-- (10) -->
 <property name="fieldExtractor"> <!-- (11) -->
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="id,type,status,point"/> <!-- (12) -->
 </property>
 </bean>
 </property>
 </bean>

</beans>

Explanation

Sr. No. Explanation

(1) Configure ItemReader.
Specify org.springframework.batch.item.file.FlatFileItemReader - an implementation
class of ItemReader to read flat file provided by Spring Batch, in class attribute.
Specify step scope in scope attribute.

(2) Specify path of input file in resource attribute.
Although the path can also be specified directly, a parameter name of input file path is
specified here in order to pass it as a parameter at the time of starting the job.

9.4. Implementation of batch job | 525

Sr. No. Explanation

(3) Configure lineTokenizer.
Specify org.springframework.batch.item.file.transform.DelimitedLineTokenizer - an
implementation class of LineTokenizer, in class attribute which splits the records by
specifying a delimiter provided by Spring Batch.
It handles reading of escaped newline character, delimiter and enclosed character,
defined in specifications of RFC-4180 which is considered as a general CSV format.

(4) Set the name assigned to each field of 1 record, in names attribute.
Each item can be retrieved by using the name set in FieldSet which is used in
FieldSetMapper.
Specify each name with a comma separator from the beginning of record.

(5) Specify a comma as a delimiter, in delimiter attribute.

(6) Set fieldSetMapper.
Specify org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper, in
class attribute since special conversion process like character string or numerals is not
required here.
Specify a DTO class created in Implementation of DTO as a class for conversion, in
targetType attribute. Accordingly, an instance is generated by automatically setting a
value in a field that matches the name of each item set in (4).

(7) Set ItemWriter.
Specify org.springframework.batch.item.file.FlatFileItemWriter - an implementation
class of ItemWriter, in class attribute in order to write to a flat file offered by Spring
Batch.
Specify step scope, in scope attribute.
In this tutorial, appendAllowed attribute is set to false(do not add) and
shouldDeleteIfExists attribute is set to true(delete existing file) and it is ensured that a
new file is created no matter how many times a job is executed.
Specify true in transactional attribute, and enable pseudo transaction control.

(8) Set path of output file in resource attribute.
A parameter name of output file path is specified in order to pass it as a parameter at the
time of starting a job.

(9) Set lineAggregator.
Specify org.springframework.batch.item.file.transform.LineAggregator, in class
attribute in order to map target Bean to 1 record.
Map properties of the Bean and each item in the record by FieldExtractor.

(10) Specify a comma as a delimiter, in delimiter attribute.

(11) Set fieldExtractor.
Map the value that matches with the field of DTO class specified in (6) with the name of
each field to be specified in (12).
Specify org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor, in
class attribute.

(12) Set the name assigned to each item of 1 record, in names attribute same as (4).

526 | 9.4. Implementation of batch job

Implementation of Tasklet which use chunk model components

In this tutorial, ItemReader.ItemWriter which are components of chunk model are
used in order to easily create a job which accesses a file in the chunk model.

Refer Tasklet implementation using components of chunk model and determine
appropriately for whether to use various components of chunk model during
Tasklet implementation.

9.4.2.3.4. Implementation of logic

Implement a business logic class which adds the points.

Implement following operations.

1. Implementation of PointAddTasklet class

2. Configuring job Bean definition file

Implementation of PointAddTasklet class

Create PointAddTasklet class which implements Tasklet interface.

org.terasoluna.batch.tutorial.fileaccess.tasklet.PointAddTasklet

package org.terasoluna.batch.tutorial.fileaccess.tasklet;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.ItemStreamException;
import org.springframework.batch.item.ItemStreamReader;
import org.springframework.batch.item.ItemStreamWriter;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;
import org.terasoluna.batch.tutorial.common.dto.MemberInfoDto;

import javax.inject.Inject;
import java.util.ArrayList;
import java.util.List;

@Component // (1)
@Scope("step") // (2)
public class PointAddTasklet implements Tasklet {

 private static final String TARGET_STATUS = "1"; // (3)

 private static final String INITIAL_STATUS = "0"; // (4)

 private static final String GOLD_MEMBER = "G"; // (5)

9.4. Implementation of batch job | 527

 private static final String NORMAL_MEMBER = "N"; // (6)

 private static final int MAX_POINT = 1000000; // (7)

 private static final int CHUNK_SIZE = 10; // (8)

 @Inject // (9)
 ItemStreamReader<MemberInfoDto> reader; // (10)

 @Inject // (9)
 ItemStreamWriter<MemberInfoDto> writer; // (11)

 @Override
 public RepeatStatus execute(StepContribution contribution, ChunkContext
chunkContext) throws Exception { // (12)
 MemberInfoDto item = null;

 List<MemberInfoDto> items = new ArrayList<>(CHUNK_SIZE); // (13)
 try {

 reader.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext()); // (14)
 writer.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext()); // (14)

 while ((item = reader.read()) != null) { // (15)

 if (TARGET_STATUS.equals(item.getStatus())) {
 if (GOLD_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 100);
 } else if (NORMAL_MEMBER.equals(item.getType())) {
 item.setPoint(item.getPoint() + 10);
 }

 if (item.getPoint() > MAX_POINT) {
 item.setPoint(MAX_POINT);
 }

 item.setStatus(INITIAL_STATUS);
 }

 items.add(item);

 if (items.size() == CHUNK_SIZE) { // (16)
 writer.write(items); // (17)
 items.clear();
 }
 }

 writer.write(items); // (18)
 } finally {

528 | 9.4. Implementation of batch job

 try {
 reader.close(); // (19)
 } catch (ItemStreamException e) {
 // do nothing.
 }
 try {
 writer.close(); // (19)
 } catch (ItemStreamException e) {
 // do nothing.
 }
 }

 return RepeatStatus.FINISHED; // (20)
 }
}

Explanation

Sr. No. Explanation

(1) Assign @Component annotation and define a Bean for subjecting it to component scanning.

(2) Assign @Scope annotation to the class and specify step scope.

(3) Define product purchasing flag:1 for point addition, as a constant.
Originally, such a field constant is defined in a constant class, and it is very rarely
defined in the logic. In this tutorial, it is considered to be defined as a constant, for the
sake of convenience (same is applicable to subsequent constants)

(4) Define initial value:0 for product purchasing flag, as a constant.

(5) Define membership type: G (gold member), as a constant.

(6) Define membership type: N (Normal member),as a constant.

(7) Define upper limit value: 1000000, as a constant.

(8) Define unit to be processed together (fixed number): 10, as a constant.

(9) Assign @Inject annotation and inject implementation of
ItemStreamReader/ItemStreamWriter.

(10) Define type as ItemStreamReader - sub-interface of ItemReader to access the file.
ItemStreamReader is required to open/close a resource.

(11) Define type as ItemStreamWriter - sub-interface of ItemWriter to access the file.
ItemStreamWriter is required to open/close the resource.

(12) Implement a product purchasing flag, and business logic to add points according to
membership type.

(13) Define a list to store a fixed number of item.

(14) Open input and output resource.

(15) Perform a loop through all input resources
ItemReader#read returns null when all the input data reaches end of reading.

9.4. Implementation of batch job | 529

Sr. No. Explanation

(16) Determine whether number of item added to the list has reached a fixed number.
When it reaches a certain number, output to the file in (17) and clear the list.

(17) Output processed data to the file.

(18) Output overall process records/remaining balance records.

(19) Close input and output resource.

(20) Return whether Tasklet process has been completed.
Always specify return RepeatStatus.FINISHED;.

Configuring job Bean definition file

Add following (1) and subsequent details to job Bean definition file in order to configure the created
business logic as a job.

src/main/resources/META-INF/jobs/fileaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd">

 <import resource="classpath:META-INF/spring/job-base-context.xml"/>

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.fileaccess.tasklet"/>

 <bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader" scope="step"
 p:resource="file:#{jobParameters['inputFile']}"
 p:encoding="UTF-8"
 p:strict="true">
 <property name="lineMapper">
 <bean
class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer"
 p:names="id,type,status,point"
 p:delimiter=","
 p:quoteCharacter='"'/>

530 | 9.4. Implementation of batch job

 </property>
 <property name="fieldSetMapper">
 <bean
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper"

p:targetType="org.terasoluna.batch.tutorial.common.dto.MemberInfoDto"/>
 </property>
 </bean>
 </property>
 </bean>

 <bean id="writer"
 class="org.springframework.batch.item.file.FlatFileItemWriter" scope="step"
 p:resource="file:#{jobParameters['outputFile']}"
 p:encoding="UTF-8"
 p:lineSeparator="
"
 p:appendAllowed="false"
 p:shouldDeleteIfExists="true"
 p:transactional="true">
 <property name="lineAggregator">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedLineAggregator"
 p:delimiter=",">
 <property name="fieldExtractor">
 <bean
class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor"
 p:names="id,type,status,point"/>
 </property>
 </bean>
 </property>
 </bean>

 <!-- (1) -->
 <batch:job id="jobPointAddTasklet" job-repository="jobRepository">
 <batch:step id="jobPointAddTasklet.step01"> <!-- (2) -->
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="pointAddTasklet"/> <!-- (3) -->
 </batch:step>
 </batch:job>
</beans>

Explanation

Sr. No. Explanation

(1) Configure job.
id attribute must be unique within the scope of all jobs included in 1 batch application.
Here, specify jobPointAddTasklet as a job name of tasklet model.

9.4. Implementation of batch job | 531

Sr. No. Explanation

(2) Configure step.
id attribute is not required to be unique within the scope of all the jobs included in 1
batch application, however a unique attribute is used since it helps in easy tracking at
the time of failure.
[step+Sr.No.] is added to id attribute specified in (1) unless there is a specific reason
otherwise.
Here, specify jobPointAddTasklet.step01 as a step name of tasklet model job.

(3) Configure tasklet.
Specify pointAddTasklet - a Bean ID of implementation class of Tasklet in ref attribute.

9.4.2.3.5. Job executio

Execute created job on IDE and verify results.

Execute job from execution configuration

Create execution configuration as shown below and execute job.
For how to create execution configuration, refer Operation check.

Here, execute job by using normal data system.
Add parameters of input and output file to Arguments tab, as arguments.

Setup value of execution configuration

• Name: Any name (Example: Run FileAccessJob for TaskletModel)

• Main tab

◦ Project: terasoluna-batch-tutorial

◦ Main class: org.springframework.batch.core.launch.support.CommandLineJobRunner

• Arguments tab

◦ Program arguments: META-INF/jobs/fileaccess/jobPointAddTasklet.xml
jobPointAddTasklet inputFile=files/input/input-member-info-data.csv
outputFile=files/output/output-member-info-data.csv

Verifying console log

Verify that following log details are output in Console.

Output example of console log

[2017/09/12 10:13:18] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddTasklet]] completed with the following parameters:
[{inputFile=files/input/input-member-info-data.csv, outputFile=files/output/output-
member-info-data.csv, jsr_batch_run_id=474}] and the following status: [COMPLETED]
[2017/09/12 10:13:18] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Tue Sep 12 10:13:16 JST 2017]; root of context hierarchy

532 | 9.4. Implementation of batch job

Verifying exit codes

Verify that the process has terminated successfully using exit code.
For verification procedure, refer Job execution and results verification. Verify that the exit code
(exit value) is 0 (successful termination).

Verifying exit codes

Verifying member information file

Compare input and output contents of member information and verify that the details are in
accordance with the verification details.

Verification details

• Member information file should output in the output directory

◦ Output file: files/output/output-member-info-data.csv

• status field

◦ Records with value "0"(initial status) should not exist

• point field

◦ Points should be added according to membership type, for point addition

▪ 100 points when type field is "G"(gold member)

▪ 10 points when type field is "N"(normal member)

◦ Points should not exceed 1,000,000 points(upper limit value)

The input/output details of member information file are as follows.
The file fields are displayed in the sequence of id(Member id), type(Membership type), status
(Product purchasing flag) and point(Points).

9.4. Implementation of batch job | 533

Input/output details of member information file

534 | 9.4. Implementation of batch job

9.4.3. A job that validates input data

Prerequisite

As explained in How to proceed with the tutorial, it will include implementation of
the jobs for A job that inputs/outputs data by accessing database and A job that
inputs/outputs data by accessing a file.
However, it must be noted that the description is for the case where the
implementation is added to the job which accesses the database.

9.4.3.1. Overview

Create a job that validates input data (hereafter, referred as input check).

Note that, since this section is based on TERASOLUNA Batch 5.x Development guideline, refer Input
check, for details.

Background, process overview and business specifications of Description of the application to be
created are given below.

9.4.3.1.1. Background

Some mass retail stores issue point cards for members.
Membership types include "Gold member", "Normal member" and the services are provided based
on the membership types.
As a part of the service, 100 points are added for "gold members" and 10 points are added for
"normal members" at the end of the month, for the members who have purchased a product during
that month.

9.4.3.1.2. Process overview

TERASOLUNA Batch 5.x will be using in an application as a monthly batch process which adds
points based on the membership type.
Implement a process which verifies validity of whether the data exceeding upper limit value of
points exists in input data.

9.4.3.1.3. Business specifications

Business specifications are as given below.

• Check that points of input data do not exceed 1,000,000 points

◦ When an error occurs during the check, the process terminates abnormally (No exception
handling)

• When the product purchasing flag is "1"(process target), points are added based on membership
type

◦ Add 100 points when membership type is "G"(Gold member) and add 10 points when
membership type is "N"(Normal member)

• Product purchasing flag is updated to "0" (initial status) after adding points

• Upper limit of points is 1,000,000 points

9.4. Implementation of batch job | 535

• If the points exceed 1,000,000 after adding the points, they are adjusted to 1,000,000 points

9.4.3.1.4. Table specifications

Specifications of member information table which serve as an input and output resource are as
shown below.
Since it acts as an explanation for a job which accesses the database as per Prerequisite, refer File
specifications for resource specifications of input and output for a job accessing a file.

Member information table (member_info)

N
o

Attribute
name

Column
name

PK Data type Numb
er of
digits

Explanation

1 Member id id CHAR 8 Represents a fixed 8 digit number which
uniquely identifies a member.

2 Membership
type

type - CHAR 1 Membership types are shown as below.
"G"(Gold member), "N"(Normal member)

3 Product
purchasing
flag

status - CHAR 1 It shows whether you have purchased a
product in the month.
It is updated to "1" (process target) when the
product is purchased and to "0" (initial
status) during monthly batch process.

4 Point point - INT 7 It shows the points retained by the members.
Initial value is 0.

9.4.3.1.5. Job overview

The process flow and process sequence are shown below to understand the overview of the job
which performs input check created here.

Since it acts as an explanation for the job which accesses a database as per Prerequisite, it must be
noted that it is likely to be different from the process flow and process sequence for the job which
access the file.

Input check is classified into unit item check and correlated item check etc., however only unit item
checks are handled here.
Use Bean Validation for unit item check. For details, refer Input check classification.

Process flow overview: Overview of process flow is shown below.

536 | 9.4. Implementation of batch job

Process flow of job which verifies validity of input data

Process sequence in case of a Chunk model

Process sequence in case of a Chunk model is explained.
Since this job is explained by assuming the usage of abnormal data, the sequence diagram shows
occurrence of error (abnormal end) during input check.
When the input check is successful, process sequence after input check is same as sequence
diagram of database access (Refer Job overview.

In case of Chunk model, input check is performed within the timing when data is passed to
ItemProcessor.

Orange object represents a class to be implemented at this time.

9.4. Implementation of batch job | 537

Sequence diagram of Chunk model

Explanation of sequence diagram

1. A step is executed from the job.

2. Step opens the resource

3. MyBatisCursorItemReader fetches all the member information from member_info table (issue
select statement).

◦ Repeat subsequent process until input data is exhausted.

◦ Start a framework transaction with the chunk units.

◦ Repeat steps from 4 to 12 until the chunk size is achieved.

4. Step fetches one record of input data from MyBatisCursorItemReader.

5. MyBatisCursorItemReader fetches one record of input data from member_info table.

6. member_info table returns input data to MyBatisCursorItemReader.

7. MyBatisCursorItemReader returns the input data to step.

8. Step processes input data by PointAddItemProcessor.

9. PointAddItemProcessor requests SpringValidator for input check.

10. SpringValidator performs input check based on input check rules and throws an exception
(ValidationException) in case an error occurs during the check.

538 | 9.4. Implementation of batch job

11. PointAddItemProcessor reads input data and adds points.

12. PointAddItemProcessor returns process results to the step.

13. Step outputs chunk size data by MyBatisBatchItemWriter.

14. MyBatisBatchItemWriter updates member information for member_info table (issue update
statement).

When an exception occurs in the processes from 4 to 14, perform the subsequent process.

15. Step rolls back framework transaction.

16. Step returns an exit code (here, abnormal end: 255) to the job.

Process sequence for a Tasklet model

Process sequence for the Tasklet model is explained.
Since this job is explained assuming the usage of abnormal data, the sequence diagram shows
occurrence of error (abnormal end) during input check.
When the input check is successful, process sequence after the input check is same as sequence
diagram of database access (Refer Job overview).

In case of a Tasklet model, input check is performed within any timing in Tasklet#execute().
Here, it is done immediately after fetching the data.

Orange object represents a class to be implemented at this time.

Sequence diagram of Tasklet model

9.4. Implementation of batch job | 539

Explanation of sequence diagram

1. A step is executed from the job.

◦ Step starts a framework transaction.

2. Step executes PointAddTasklet.

3. PointAddTasklet opens a resource.

4. MyBatisCursorItemReader fetches all the member information from member_info table (issue
select statement).

◦ Repeat steps from 5 to 13 until the input data is exhausted.

◦ Repeat processes from 5 to 11 until a fixed number of records is achieved.

5. PointAddTasklet fetches one record of input data from MyBatisCursorItemReader.

6. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

7. member_info table returns input data to MyBatisCursorItemReader.

8. MyBatisCursorItemReader returns input data to tasklet.

9. PointAddTasklet requests SpringValidator for input check.

10. SpringValidator performs input check based on input check rules and throws an exception
(ValidationException) in case an error occurs during the check.

11. PointAddTasklet reads input data and adds points.

12. PointAddTasklet` outputs data of fixed records by MyBatisBatchItemWriter``.

13. MyBatisBatchItemWriter updates member information for member_info table (issue update
statement).

When an exception occurs in the processes from 2 to 13, perform the subsequent process.

14. PointAddTasklet throws an exception (here, ValidationException)in the step.

15. Step rolls back the framework transaction.

16. Step returns an exit code (here, abnormal end: 255) to the job.

540 | 9.4. Implementation of batch job

Setting for implementing input check process

Use Hibernate Validator in input check. Although it is configured already in
TERASOLUNA Batch 5.x, Hibernate Validator and Bean must be defined in the
dependency relation of the library.

Configuration example of dependent library (pom.xml)

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
</dependency>

src/main/resources/META-INF/spring/launch-context.xml

<bean id="validator"
class="org.springframework.batch.item.validator.SpringValidator"
 p:validator-ref="beanValidator"/>

<bean id="beanValidator"

class="org.springframework.validation.beanvalidation.LocalValidatorFact
oryBean" />

How to implement a Chunk model and a Tasklet model are explained subsequently.

• Implementation in Chunk model

• Implementation in Tasklet model

9.4.3.2. Implementation in Chunk model

Execute the job which performs input check in the Chunk model, from its creation to execution
using following procedure.

1. Defining input check rules

2. Implementation of input check process

3. Job execution

9.4.3.2.1. Defining input check rules

Assign Bean Validation annotation to the field for checking DTO class in order to perform input
check.
For input check annotation, refer Bean Validation check rules and Hibernate Validator check rules
of TERASOLUNA Server 5.x Development Guideline.

Since it is used in common for Chunk model / Tasklet model, it can be skipped if it has already been
implemented.

Here, define a check rule to check whether points exceed 1,000,000 (upper limit value).

9.4. Implementation of batch job | 541

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-jsr303-doc
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-validator-list

org.terasoluna.batch.tutorial.common.dto.MemberInfoDTO

package org.terasoluna.batch.tutorial.common.dto;

import javax.validation.constraints.Max;

public class MemberInfoDto {
 private String id;

 private String type;

 private String status;

 @Max(1000000) // (1)
 private int point;

 // Getter and setter are omitted.
}

Explanation

Sr. No. Explanation

(1) Assign @Max annotation which indicates that the target field is less than or equal to the
specified value.

9.4.3.2.2. Implementation of input check process

Implement input check process in business logic class which adds the points.

Add implementation of input check process to already implemented PointAddItemProcessor class.
Since it acts as an explanation for a job which accesses the database as per Prerequisite, add only
(1)~(3) from below to the implementation for the job accessing the file.

542 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.dbaccess.chunk.PointAddItemProcessor

// Package and the other import are omitted.

import javax.inject.Inject;

@Component
public class PointAddItemProcessor implements ItemProcessor<MemberInfoDto,
MemberInfoDto> {
 // Definition of constants are omitted.

 @Inject // (1)
 Validator<MemberInfoDto> validator; // (2)

 @Override
 public MemberInfoDto process(MemberInfoDto item) throws Exception {
 validator.validate(item); // (3)

 // The other codes of business logic are omitted.
 }
}

Explanation

Sr. No. Explanation

(1) Inject an instance of SpringValidator.

(2) Set DTO to be fetched through ItemReaderin the type argument of
`org.springframework.batch.item.validator.Validator.

(3) Execute Validator#validate() by using DTO fetched through ItemReader as an argument.
Originally, try-catch was implemented to handle input check error and catch the
exception while executing validate(), however, since exception handling using try-catch
is explained in Job which performs exception handling by try-catch, exception handling
is not implemented here.

9.4.3.2.3. Job execution

Execute the created job on IDE and verify the results.

Execute the job from execution configuration

Execute the job from execution configuration which is created in advance.

Here, the job is executed by using abnormal data.
Since how to change input data varies according to resource (database or file) which handles a job
performing input check, execute as below.

When input check is implemented for the job which inputs or outputs data by accessing database

Execute job by using execution configuration created in Execute job from execution
configuration of the job which inputs or outputs data by accessing database.

9.4. Implementation of batch job | 543

In order to use abnormal data, comment out script of normal data and remove comment out of
abnormal data by Database Initialize of batch-application.properties.

src/main/resources/batch-application.properties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

When input check is implemented for the job which inputs or outputs data by accessing a file

Execute job by using execution configuration created in Execute job from execution
configuration of the job which inputs or outputs data by accessing a file.

In order to use abnormal data, change path of input file (inputFile) from normal data (insert-
member-info-data.csv) to abnormal data (insert-member-info-error-data.csv), from the arguments
set in execution configuration.

Verify console log

Open Console View and verify that log of the following details is output.
Here, verify that the process ends abnormally (FAILED) and
org.springframework.batch.item.validator.ValidationException has occurred.

544 | 9.4. Implementation of batch job

Example of console log output

[2017/08/28 10:53:21] [main] [o.s.b.c.s.AbstractStep] [ERROR] Encountered an error
executing step jobPointAddChunk.step01 in job jobPointAddChunk
org.springframework.batch.item.validator.ValidationException: Validation failed for
org.terasoluna.batch.tutorial.common.dto.MemberInfoDto@1fde4f40:
Field error in object 'item' on field 'point': rejected value [1000001]; codes
[Max.item.point,Max.point,Max.int,Max]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[item.point,point]; arguments []; default message [point],1000000]; default message
[must be less than or equal to 1000000]
 at
org.springframework.batch.item.validator.SpringValidator.validate(SpringValidator.java
:54)

 (.. omitted)

Caused by: org.springframework.validation.BindException:
org.springframework.validation.BeanPropertyBindingResult: 1 errors
Field error in object 'item' on field 'point': rejected value [1000001]; codes
[Max.item.point,Max.point,Max.int,Max]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[item.point,point]; arguments []; default message [point],1000000]; default message
[must be less than or equal to 1000000]
 ... 29 common frames omitted
[2017/08/28 10:53:21] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddChunk]] completed with the following parameters:
[{jsr_batch_run_id=408}] and the following status: [FAILED]
[2017/08/28 10:53:21] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@2145433b: startup
date [Mon Aug 28 10:53:18 JST 2017]; root of context hierarchy

Verify exit code

Verify that the process has terminated abnormally, by exit code.
For verification process, refer Job execution and results verification. Verify that exit code (exit
value) is 255 (abnormal end).

Verify exit code

9.4. Implementation of batch job | 545

Verify output resource

Verify output resource (database or file) using the job which implements input check.

In case of a Chunk model, since an intermediate commit method is adopted, verify that update is
determined upto chunk just prior to the error location part.

Verify member information table

Use Data Source Explorer and verify member information table.
Compare the contents of member information table before and after the update, and verify that the
contents are in accordance with verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• Regarding records from 1 to 10 (Records with member id from "00000001" to "00000010")

◦ status column

▪ Records with "0"(initial status) record should not exist

◦ point column

▪ Points should be added according to membership type

▪ 100 points when type column is "G" (Gold member)

▪ 10 points when type column is "N"(Normal member)

• Regarding records from 11 to 15 (Records with member id from "00000011" to "00000015")

◦ Should not be updated

Contents of the member information table before and after update are shown below.

Contents of the member information table before and after update

Verify member information file

Compare input and output contents of member information file and verify that the contents are in

546 | 9.4. Implementation of batch job

accordance with the verification details.

Verification details

• Member information file is output in output directory

◦ Output file: files/output/output-member-info-data.csv

• Output records should contain only the records from 1 to 10 (records with member id from
"00000001" to "00000010")

• Regarding output records

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points should be added according to membership type, for adding points

▪ 100 points when type column is "G"(Gold member)

▪ 10 points when type column is "N"(Normal member)

Input and output details of member information file are shown below.
File fields are output in the sequence of id(member ID), type(membership type), status(product
purchasing flag) and point(Points).

Input/Output details of member information file

9.4.3.3. Implementation in Tasklet model

Operations from creation to execution of a job which performs input check in Tasklet model are
implemented by following procedure.

1. Defining input check rules

2. Implementation of input check process

3. Job execution

9.4. Implementation of batch job | 547

9.4.3.3.1. Defining input check rules

In order to perform input check, assign a Bean Validation annotation to the field for checking DTO
class.
For input check annotation, refer Bean Validation check rules and Hibernate Validator check rules
of TERASOLUNA Server 5.x Development Guideline.

Since it is used in common for Chunk model / Tasklet model, it can be skipped if it has already been
implemented.

Here, define check rules to check whether points have exceeded 1,000,000 (upper limit).

org.terasoluna.batch.tutorial.common.dto.MemberInfoDTO

package org.terasoluna.batch.tutorial.common.dto;

import javax.validation.constraints.Max;

public class MemberInfoDto {
 private String id;

 private String type;

 private String status;

 @Max(1000000) // (1)
 private int point;

 // Getter and setter are omitted.
}

Explanation

Sr. No. Explanation

(1) Assign @Max annotation which indicates that target field is less than or equal to the
specified numeric value.

9.4.3.3.2. Implementation of input check process

Implement input check processing in business logic class which performs point addition.

Add implementation of input check process in already implemented PointAddTasklet class.
Since it acts as an explanation of job which accesses the database as per Prerequisite, only (1)~(3)
below are added for the implementation in case of job accessing the file.

548 | 9.4. Implementation of batch job

http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-jsr303-doc
http://terasolunaorg.github.io/guideline/5.3.0.RELEASE/en/ArchitectureInDetail/WebApplicationDetail/Validation.html#validation-validator-list

org.terasoluna.batch.tutorial.dbaccess.tasklet.PointAddTasklet

// Package and the other import are omitted.

import javax.inject.Inject;

@Component
public class PointAddTasklet implements Tasklet {
 // Definition of constant, ItemStreamReader and ItemWriter are omitted.

 @Inject // (1)
 Validator<MemberInfoDto> validator; // (2)

 @Override
 public RepeatStatus execute(StepContribution contribution, ChunkContext
chunkContext) throws Exception {
 MemberInfoDto item = null;

 List<MemberInfoDto> items = new ArrayList<>(CHUNK_SIZE);

 try {
 reader.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext());

 while ((item = reader.read()) != null) {
 validator.validate(item); // (3)

 // The other codes of business logic are omitted.
 }

 writer.write(items);
 } finally {
 reader.close();
 }

 return RepeatStatus.FINISHED;
 }
}

Explanation

Sr. No. Explanation

(1) Inject an instance of SpringValidator.

(2) Set a DTO to be fetched through ItemReader in type argument of
org.springframework.batch.item.validator.Validator.

9.4. Implementation of batch job | 549

Sr. No. Explanation

(3) Execute Validator#validate() using DTO fetched through ItemReader as an argument.
Originally, try-catch was implemented to handle input check error and catch the
exception while executing validate(), however since exception handling using try-catch
is explained in Job which performs exception handling by try-catch, exception handling
is not implemented here.

9.4.3.3.3. Job execution

Execute the created job on IDE and verify results.

Execute job from execution configuration

Execute the job from already created execution configuration.

Here, execute the job by using abnormal data.
Since how to change input data varies based on the resource (database or file) which handles a job
implementing input check, implement as below.

When input check is implemented for the job which inputs or outputs data by accessing a database

Execute job by using execution configuration created in Execute job from execution
configuration of job which inputs or outputs data by accessing database.

In order to use abnormal data, comment out script of normal data and remove comment out of
script of abnormal data by Database Initialize of batch-application.properties.

src/main/resources/batch-application.properties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

When input check is implemented for the job which inputs or outputs data by accessing a file

Execute job by using execution configuration created in Execute job from execution
configuration of the job which inputs or outputs data by accessing a file.

In order to use abnormal data, change the path of input file (inputFile) from normal data (insert-
member-info-data.csv) to abnormal data (insert-member-info-error-data.csv), from the arguments
set in execution configuration.

Verify console log

Open Console View and verify whether the log for following details is output.
Here, verify that process ends abnormally (FAILED) and
org.springframework.batch.item.validator.ValidationException has occurred.

550 | 9.4. Implementation of batch job

Example of console log output

[2017/09/12 10:18:49] [main] [o.s.b.c.s.AbstractStep] [ERROR] Encountered an error
executing step jobPointAddTasklet.step01 in job jobPointAddTasklet
org.springframework.batch.item.validator.ValidationException: Validation failed for
org.terasoluna.batch.tutorial.common.dto.MemberInfoDto@2c383e33:
Field error in object 'item' on field 'point': rejected value [1000001]; codes
[Max.item.point,Max.point,Max.int,Max]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[item.point,point]; arguments []; default message [point],1000000]; default message
[must be less than or equal to 1000000]
 at
org.springframework.batch.item.validator.SpringValidator.validate(SpringValidator.java
:54)

(.. omitted)

Caused by: org.springframework.validation.BindException:
org.springframework.validation.BeanPropertyBindingResult: 1 errors
Field error in object 'item' on field 'point': rejected value [1000001]; codes
[Max.item.point,Max.point,Max.int,Max]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[item.point,point]; arguments []; default message [point],1000000]; default message
[must be less than or equal to 1000000]
 ... 24 common frames omitted
[2017/09/12 10:18:49] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddTasklet]] completed with the following parameters:
[{jsr_batch_run_id=476}] and the following status: [FAILED]
[2017/09/12 10:18:49] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Tue Sep 12 10:18:47 JST 2017]; root of context hierarchy

Verify exit code

Verify that the process has terminated abnormally by using exit code.
For verification procedure, refer Job execution and results verification. Verify that exit code (exit
value) is 255(abnormal end).

Verify exit code

Verify output resource

Verify output resource (database or file) by job which implements input check.

9.4. Implementation of batch job | 551

Since batch commit method is used in case of a Tasklet model, it must be confirmed that it has not
been updated at all in case an error occurs.

Verify member information table

Use Data Source Explorer and verify member information table.
Compare contents of member information table before and after update, and verify whether the
contents are in accordance with the verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• Data should not be updated for all the records

Contents of the member information table in the initial state

Verify member information file

Compare input and output details of member information file and verify that the contents are in
accordance with the verification details.

Verification details

• Member information file is output as blank file in the output directory

◦ Output file: files/output/output-member-info-data.csv

552 | 9.4. Implementation of batch job

9.4.4. A job which performs exception handling by ChunkListener

Premise

As explained in How to proceed in the tutorial, it is a format to add
implementation of exception handling for jobs that validate input data Note that,
various methods like try-catch or ChunkListener are used as exception handling
methods.
However, it must be noted that the explanation is for the case wherein the
implementation is added to the job which accesses the database.

9.4.4.1. Overview

Create a job which performs exception handling by ChunkListener.

Note that, since this section is explained based on TERASOLUNA Batch 5.x Development guideline,
refer to Exception handling by ChunkListener interface for details.

Regarding usage of listener

By using a listener, exception handling is implemented by checking that the
exception has occurred after execution of step here. However, since the use of
listener is not restricted to exception handling, refer Listener for details. refer
Listener for details.

Background, process overview and business specifications of Explanation of application to be
created are listed below.

9.4.4.1.1. Background

Some mass retail stores issue point cards to the members.
Membership types include "Gold members", "Normal members" and the services are provided
based on membership type.
As a part of the service, 100 points are added for "gold members" and 10 points are added for
"normal members" at the end of the month, for the members who have purchased a product during
that month.

9.4.4.1.2. Process overview

TERASOLUNA Batch 5.x will be using an application as a monthly batch process which adds points
based on the membership type.
A process to validate verification for checking whether the input data exceeds upper limit value of
points is additionally implemented, a log is output at the time of error and the process is
abnormally terminated.

9.4.4.1.3. Business specifications

Business specifications are as shown below.

• Check that the input data points do not exceed 1,000,000 points

◦ When an error occurs during a process, an error message is output in a log and process is

9.4. Implementation of batch job | 553

terminated abnormally

◦ Error message is handled through subsequent processing by using a listener

◦ Message content is read as "The Point exceeds 1000000."

• When the product purchasing flag is "1"(process target), points are added based on membership
type

◦ Add 100 points when membership type is "G"(gold member),and add 10 points when
membership type is "N" (normal member).

• Product purchasing flag is updated to "0" (initial status) after adding points

• Upper limit of points is 1,000,000 points

• If the points exceed 1,000,000 points after adding points, they are adjusted to 1,000,000 points.

9.4.4.1.4. Table specifications

Specifications of member information table acting as an input and output resource are shown
below.
Since it acts as an explanation for the job which accesses the database as per Premise refer File
specifications for resource specifications of input and output in case of a job accessing the file.

Member information table (member_info)

N
o

Attribute
name

Column
name

PK Data type Numb
er of
digits

Explanation

1 Member Id id CHAR 8 Indicates a fixed 8 digit number which
uniquely identifies a member.

2 Membership
type

type - CHAR 1 Membership types are as shown below.
"G"(Gold member), "N"(Normal member)

3 Product
purchasing
flag

status - CHAR 1 Indicates whether you have purchased a
product during the month.
When the product is purchased, it is updated
to "1"(process target) and to "0"(initial status)
during monthly batch processing.

4 Point point - INT 7 Indicates points retained by the member.
Initial value is 0.

9.4.4.1.5. Job overview

Process flow and process sequence are shown below in order to understand the overview of the job
which performs input check created here.

Since it acts as an explanation for the job which accesses the database as per Premise, it must be
noted that parts different from that of a process flow and process sequence in case of a job
accessing the file exists.

Process flow overview

Process flow overview is shown below.

554 | 9.4. Implementation of batch job

Process flow of job which performs exception handling

Process sequence in case of a chunk model

Process sequence is explained in case of a chunk model.

Process sequence is explained in case of a chunk model.
Since this job is explained assuming usage of abnormal data, the sequence diagram indicates that
error (abnormal termination) has occurred during input check.
When input check is successful, process sequence after input check is same as sequence diagram
(Refer Job overview) of database access.

Orange object indicates a class to be implemented at that time.

9.4. Implementation of batch job | 555

Sequence diagram of chunk model

Explanation of sequence diagram

1. Step is executed from the job.

2. Step opens a resource.

3. MyBatisCursorItemReader fetches all the member information from member_info table (issue
select statement).

◦ Repeat subsequent processes until input data is exhausted.

◦ Start a framework transaction in chunk units.

◦ Repeat processes from 4 to 12 until chunk size is reached.

4. Step fetches 1 record of input data from MyBatisCursorItemReader.

5. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

6. member_info table returns input data to MyBatisCursorItemReader.

7. MyBatisCursorItemReader returns input data to step.

8. Step performs a process for input data by PointAddItemProcessor.

9. PointAddItemProcessor requests an input check process to SpringValidator.

10. SpringValidator performs input check based on input check rules and throws an exception

556 | 9.4. Implementation of batch job

(ValidationException) when an error occurs during checking.

11. PointAddItemProcessor adds the points by reading input data.

12. PointAddItemProcessor returns process results to step.

13. Step outputs chunk size data in MyBatisBatchItemWriter.

14. MyBatisBatchItemWriter updates member information for member_info table (issue update
statement) .

When an exception occurs in the processes from 4 to 14, perform the subsequent process.

15. Step rolls back a framework transaction.

16. Step executes ChunkErrorLoggingListener.

17. ChunkErrorLoggingListener outputs ERROR log.

18. Step returns exit code (here, abnormal termination:255) to the job.

Process sequence in case of a tasklet model

Process sequence in case of a tasklet model is explained.
Since this job is explained assuming usage of abnormal data, the sequence diagram indicates
that error (abnormal termination) has occurred during input check.
When input check is successful, process sequence after input check is same as sequence diagram
of (Refer Job overview) of database access.

Orange object indicates a class to be implemented at that time.

9.4. Implementation of batch job | 557

Sequence diagram of tasklet model

Explanation of sequence diagram

1. Step is executed from the job.

◦ Step starts a framework transaction.

2. Step executes PointAddTasklet.

3. PointAddTasklet opens a resource.

4. MyBatisCursorItemReader fetches all the member information from member_info table (issue
select statement).

◦ Repeat processes from 5 to 13 until input data is exhausted.

◦ Repeat the processes from 5 to 11 until a certain number of records is reached.

5. PointAddTasklet fetches 1 record of input data from MyBatisCursorItemReader.

6. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

7. member_info table returns input data to MyBatisCursorItemReader.

8. MyBatisCursorItemReader returns input data to tasklet.

9. PointAddTasklet requests input check process to SpringValidator.

10. SpringValidator performs input check based on input check rules and throws an exception
(ValidationException) when an error occurs during the checking.

558 | 9.4. Implementation of batch job

11. PointAddTasklet adds points by reading input data.

12. PointAddTasklet outputs a certain records of data by MyBatisBatchItemWriter.

13. MyBatisBatchItemWriter updates member information for member_info table (issue update
statement).

When an exception occurs in the processes from 2 to 13, perform the subsequent process.

14. PointAddTasklet throws an exception (Here, ValidationException) in step.

15. Step rolls back the framework transaction.

16. Step executes ChunkErrorLoggingListener.

17. ChunkErrorLoggingListener outputs ERROR log.

18. Step returns an exit code (here, abnormal termination:255) to the job.

How to implement for chunk model and tasklet model are further explained.

• Implementation in chunk model

• Implementation in tasklet model

9.4.4.2. Implementation in chunk model

Processes from creation to execution of job which performs input check in chunk model are
implemented with the following processes.

1. Adding message definition

2. Implementation of exception handling

3. Job execution and results verification

9.4.4.2.1. Adding message definition

Log message uses message definition and is used at the time of log output to make it easier to design
prevention of variations in the code system and extraction of keywords to be monitored.

Since it is used as common in the chunk model / tasklet model, it can be skipped if created already.

Set application-messages.properties and launch-context.xml as shown below.
launch-context.xml is already configured in TERASOLUNA Batch 5.x.

src/main/resources/i18n/application-messages.properties

(1)
errors.maxInteger=The {0} exceeds {1}.

9.4. Implementation of batch job | 559

src/main/resources/META-INF/spring/launch-context.xml

<!-- omitted -->

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource"
 p:basenames="i18n/application-messages" /> <!-- (2) -->

<!-- omitted -->

Explanation

Sr. No. Explanation

(1) Set the message to be output when the upper limit of points is exceeded.
Assign item name to {0) and upper limit value to {1}.

(2) Set MessageSource to use the message from the property file.
Specify storage location of property file in basenames.

9.4.4.2.2. Implementation of exception handling

Implement exception handling process.

Implement following processes.

1. Implementation of ChunkErrorLoggingListener class

2. Configuring Job Bean definition file

Implementation of ChunkErrorLoggingListener class

Perform exception handling by using ChunkListener interface.
Implement the process which output ERROR log when an exception occurs, as an implementation
class of ChunkListener interface.

560 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.common.listener.ChunkErrorLoggingListener

package org.terasoluna.batch.tutorial.common.listener;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.core.ChunkListener;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.item.validator.ValidationException;
import org.springframework.context.MessageSource;
import org.springframework.stereotype.Component;

import javax.inject.Inject;
import java.util.Locale;

@Component
public class ChunkErrorLoggingListener implements ChunkListener {
 private static final Logger logger = LoggerFactory.getLogger
(ChunkErrorLoggingListener.class);

 @Inject
 MessageSource messageSource; // (1)

 @Override
 public void beforeChunk(ChunkContext chunkContext) {
 // do nothing.
 }

 @Override
 public void afterChunk(ChunkContext chunkContext) {
 // do nothing.
 }

 @Override
 public void afterChunkError(ChunkContext chunkContext) {
 Exception e = (Exception) chunkContext.getAttribute(ChunkListener
.ROLLBACK_EXCEPTION_KEY); // (2)
 if (e instanceof ValidationException) {
 logger.error(messageSource
 .getMessage("errors.maxInteger", new String[] { "Point", "1000000"
}, Locale.getDefault())); // (3)
 }
 }
}

Explanation

Sr. No. Explanation

(1) Inject an instance of ResourceBundleMessageSource.

9.4. Implementation of batch job | 561

Sr. No. Explanation

(2) Fetch the value of the exception occurred which is set using the key
ROLLBACK_EXCEPTION_KEY.

(3) Fetch a message with message ID errors.maxInteger from the property file and output in
a log.

Configuring Job Bean definition file

Configuration of job Bean definition file to perform exception handling with ChunkListener is
shown below.

562 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- omitted -->

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.chunk,
 org.terasoluna.batch.tutorial.common.listener"/> <!-- (1) -->

 <!-- omitted -->

 <batch:job id="jobPointAddChunk" job-repository="jobRepository">
 <batch:step id="jobPointAddChunk.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="pointAddItemProcessor"
 writer="writer" commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="chunkErrorLoggingListener"/> <!--(2)-->
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 </batch:job>

</beans>

Explanation

Sr. No. Explanation

(1) Configure a base package subjected to component scanning.
Specify an additional package containing implementation class of ChunkListener, in base-
package attribute.

9.4. Implementation of batch job | 563

Sr. No. Explanation

(2) Set implementation class of StepListener. Note that, ChunkListener is an extended
interface of StepListener.
Here, specify chunkErrorLoggingListener that is a Bean ID of implementation class of
ChunkListener.

9.4.4.2.3. Job execution and results verification

Execute created job on STS and verify the results.

Execute job from execution configuration

Execute job from already created execution configuration.

Here, execute job by using abnormal system data.
Since how to change input data varies based on the resource (database or file) which handles the
job of implementing input check, execute as below.

When input check is to be implemented for a job which inputs or outputs data by accessing the
database

Execute job by using execution configuration created in Execute job from execution
configuration of a job which inputs or outputs data by accessing a database.

Comment out script of normal system data and cancel comment out of abnormal system data script
by Database Initialize of batch-application.proeprties in order to use abnormal system data.

src/main/resources/batch-application.proeprties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

When input check is implemented for the job which inputs or outputs data by accessing a file

Execute job by using execution configuration created in Execute job from execution
configuration of the job which inputs or outputs data by accessing a file.

Change input file (inputFile) path from normal system data (insert-member-info-data.csv) to
abnormal system data (insert-member-info-error-data.csv), from the arguments configured by
execution configuration in order to use abnormal system data.

Verifying console log

Open Console View and verify that log of following details is output.

• Process has terminated abnormally (FAILED)

• org.springframework.batch.item.validator.ValidationException has occurred

• org.terasoluna.batch.tutorial.common.listener.ChunkErrorLoggingListener outputs following

564 | 9.4. Implementation of batch job

message as an ERROR log

◦ "The Point exceeds 1000000."

Example of console log output

[2017/09/12 11:13:52] [main] [o.t.b.t.c.l.ChunkErrorLoggingListener] [ERROR] The Point
exceeds 1000000.
[2017/09/12 11:13:52] [main] [o.s.b.c.s.AbstractStep] [ERROR] Encountered an error
executing step jobPointAddChunk.step01 in job jobPointAddChunk
org.springframework.batch.item.validator.ValidationException: Validation failed for
org.terasoluna.batch.tutorial.common.dto.MemberInfoDto@6c8a68c1:
Field error in object 'item' on field 'point': rejected value [1000001]; codes
[Max.item.point,Max.point,Max.int,Max]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[item.point,point]; arguments []; default message [point],1000000]; default message
[must be less than or equal to 1000000]
 at
org.springframework.batch.item.validator.SpringValidator.validate(SpringValidator.java
:54)

(.. omitted)

[2017/09/12 11:13:52] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddChunk]] completed with the following parameters:
[{jsr_batch_run_id=480}] and the following status: [FAILED]
[2017/09/12 11:13:52] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Tue Sep 12 11:13:50 JST 2017]; root of context hierarchy

Verifying exit code

Verify that the process has terminated abnormally, using exit codes.
For verification, refer Job execution and results verification. Verify that the exit code (exit value) is
255 (abnormal termination).

Verifying exit codes

Verifying output resource

Verify an output resource (database or file) by a job which implements input check.

9.4. Implementation of batch job | 565

In case of a chunk model, verify the update is confirmed upto the chunk just prior the error
location since intermediate commit is being adopted.

Verifying member information table

Verify member information table by using Data Source Explorer.
Compare the contents of member information table before and after update, and verify that the
contents are in accordance with the verification details.
For verification details, refer Refer database by using Data Source Explorer.

Verification details

• Regarding records from 1 to 10 (records with member ID from "00000001" to "00000010")

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points should be added according to membership type, for points addition

▪ 100 points when type column is "G" (gold member)

▪ 10 points when type column is "N"(normal member)

• Regarding records from 11 to 15 (records with member ID from "00000011" to "00000015")

◦ Should not be updated

Contents of member information table before and after update are shown below.

Contents of member information table before and after update

Verifying member information file

Compare input and output contents of member information file and verify that the contents are in
accordance with verification details.

566 | 9.4. Implementation of batch job

Verification details

• Member information file should be output in the output directory

◦ Output file: files/output/output-member-info-data.csv

• Output records should be only for records 1 to 10 (records with member ID from "00000001"
to "00000010")

• Regarding output records

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points should be added based on membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

Input and output details of member information file are shown below.
File fields are output in the sequence of id (member id), type (membership type), status(product
purchasing flag) and point(points).

Input and output details of member information file

9.4.4.3. Implementation in tasklet model

Implement the processes from creation to execution of a job which performs input check in tasklet
model using following procedures.

1. Adding message definition

2. Implementation of exception handling

3. Job execution and results verification

9.4. Implementation of batch job | 567

9.4.4.3.1. Adding message definition

Log message uses message definition and is used at the time of log output to make it easier to design
prevention of variations in the code system and extraction of keywords to be monitored.

Since it is used as a common in the chunk model / tasklet model, it can be skipped if created
already.

Configure application-messages.properties and launch-context.xml as shown below.
launch-context.xml is already configured in TERASOLUNA Batch 5.x.

src/main/resources/i18n/application-messages.properties

(1)
errors.maxInteger=The {0} exceeds {1}.

src/main/resources/META-INF/spring/launch-context.xml

<!-- omitted -->

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource"
 p:basenames="i18n/application-messages" /> <!-- (2) -->

<!-- omitted -->

Explanation

Sr. No. Explanation

(1) Configure a message to be output when the upper limit of points is exceeded.
Assign item name to {0) and upper limit value to {1}.

(2) Set MessageSource to use the message from the property file.
Specify storage location of property file in basenames.

9.4.4.3.2. Implementation of exception handling

Implement exception handling process.

Implement following processes.

1. Implementation of ChunkErrorLoggingListener class

2. Configuring job Bean definition file

Implementation of ChunkErrorLoggingListener class

Perform exception handling by using ChunkListener interface.
Implement the process which output ERROR log when an exception occurs, as an implementation
class of ChunkListener interface.

568 | 9.4. Implementation of batch job

org.terasoluna.batch.tutorial.common.listener.ChunkErrorLoggingListener

package org.terasoluna.batch.tutorial.common.listener;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.core.ChunkListener;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.item.validator.ValidationException;
import org.springframework.context.MessageSource;
import org.springframework.stereotype.Component;

import javax.inject.Inject;
import java.util.Locale;

@Component
public class ChunkErrorLoggingListener implements ChunkListener {
 private static final Logger logger = LoggerFactory.getLogger
(ChunkErrorLoggingListener.class);

 @Inject
 MessageSource messageSource; // (1)

 @Override
 public void beforeChunk(ChunkContext chunkContext) {
 // do nothing.
 }

 @Override
 public void afterChunk(ChunkContext chunkContext) {
 // do nothing.
 }

 @Override
 public void afterChunkError(ChunkContext chunkContext) {
 Exception e = (Exception) chunkContext.getAttribute(ChunkListener
.ROLLBACK_EXCEPTION_KEY); // (2)
 if (e instanceof ValidationException) {
 logger.error(messageSource
 .getMessage("errors.maxInteger", new String[] { "Point", "1000000"
}, Locale.getDefault())); // (3)
 }
 }
}

Explanation

Sr. No. Explanation

(1) Inject an instance of ResourceBundleMessageSource.

9.4. Implementation of batch job | 569

Sr. No. Explanation

(2) Fetch the value of the exception occurred which is set using the key
ROLLBACK_EXCEPTION_KEY.

(3) Fetch a message with message ID errors.maxInteger from the property file and output in
a log.

Configuring job Bean definition file

Configuration of job Bean definition file which performs exception handling by ChunkListener.

src/main/resources/META-INF/jobs/dbaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- omitted -->

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.tasklet,
 org.terasoluna.batch.tutorial.common.listener"/> <!-- (1) -->

 <!-- omitted -->

 <batch:job id="jobPointAddTasklet" job-repository="jobRepository">
 <batch:step id="jobPointAddTasklet.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="pointAddTasklet">
 <batch:listeners>
 <batch:listener ref="chunkErrorLoggingListener"/> <!-- (2) -->
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
 </batch:job>

</beans>

570 | 9.4. Implementation of batch job

Explanation

Sr. No. Explanation

(1) Configure a base package subjected to component scanning.
Specify additional package containing the implementation class of ChunkListener, in
base-package attribute.

(2) Configure implementation class of StepListener. Note that, ChunkListener is an extended
interface of StepListener.
Here, specify chunkErrorLoggingListener that is a Bean ID of implementation class of
ChunkListener.

9.4.4.3.3. Job execution and results verification

Execute created job on STS and verify results.

Execute a job from execution configuration

Execute a job from execution configuration which is created already.

Here, execute a job by using abnormal data.
Since how to change input data vary depending on resource (database or file) which handle job
implementing input check, execute as below.

When input check is implemented for the job which inputs or outputs data by accessing a database

Execute a job by using execution configuration created in Execute job from execution
configuration of a job which inputs or outputs data by accessing a database.

Comment out script of normal system data and cancel comment out of abnormal system data script
by Database Initialize of batch-application.proeprties in order to use abnormal system data.

src/main/resources/batch-application.proeprties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

When input check is implemented for a job which inputs or outputs data by accessing a file

Execute a job by using execution configuration created in Execute job from execution
configuration of job which inputs or outputs data by accessing a file.

Change input file (inputFile) path from normal system data (insert-member-info-data.csv) to
abnormal system data (insert-member-info-error-data.csv), from the arguments configured by
execution configuration in order to use abnormal system data.

Verifying console log

Open Console View and verify that following details are output in a log.

9.4. Implementation of batch job | 571

• Process has terminated abnormally (FAILED)

• org.springframework.batch.item.validator.ValidationException should occur

• org.terasoluna.batch.tutorial.common.listener.ChunkErrorLoggingListener should output
following message as an ERROR log

◦ "The Point exceeds 1000000."

Example of console log output

[2017/09/12 10:22:22] [main] [o.t.b.t.c.l.ChunkErrorLoggingListener] [ERROR] The Point
exceeds 1000000.
[2017/09/12 10:22:22] [main] [o.s.b.c.s.AbstractStep] [ERROR] Encountered an error
executing step jobPointAddTasklet.step01 in job jobPointAddTasklet
org.springframework.batch.item.validator.ValidationException: Validation failed for
org.terasoluna.batch.tutorial.common.dto.MemberInfoDto@6e4ea0bd:
Field error in object 'item' on field 'point': rejected value [1000001]; codes
[Max.item.point,Max.point,Max.int,Max]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[item.point,point]; arguments []; default message [point],1000000]; default message
[must be less than or equal to 1000000]
 at
org.springframework.batch.item.validator.SpringValidator.validate(SpringValidator.java
:54)

(.. omitted)

[2017/09/12 10:22:22] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddTasklet]] completed with the following parameters:
[{jsr_batch_run_id=478}] and the following status: [FAILED]
[2017/09/12 10:22:22] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Tue Sep 12 10:22:20 JST 2017]; root of context hierarchy

Verifying exit codes

Verify that the process has terminated abnormally, using exit codes.
For verification procedure, refer Job execution and results verification. Verify that the exit code
(exit value) is 255 (abnormal termination).

Verifying exit codes

572 | 9.4. Implementation of batch job

Verifying output resource

Verify an output resource (database or file) by a job which performs input check.

In case of a tasklet model, confirm that nothing has been updated when an error occurs since
collective commit is being adopted.

Verifying member information table

Verify member information table by using Data Source Explorer.
Compare contents of member information table before and after update, and verify that the
contents are in accordance with verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• Data should not be updated for all the records

Contents of member information table in initial status are shown below.

Contents of member information file in initial status

Verifying member information file

Compare output contents of member information file and verify that the contents are in
accordance with verification details.

Verification details

9.4. Implementation of batch job | 573

• Member information file should be output in the output directory as Blank file

◦ Output file: files/output/output-member-info-data.csv

574 | 9.4. Implementation of batch job

9.4.5. A job which performs exception handling by try-catch

Premise

As explained in How to proceed in the tutorial, it is a format to add
implementation of exception handling for jobs that validate input data Note that,
various methods like try-catch or ChunkListener are used as exception handling
methods.
However, it must be noted that the explanation is for the case wherein the
implementation is added to the job which accesses the database.

9.4.5.1. Overview

Create a job which performs exception handling by try-catch.

Note that, since this chapter is explained based on TERASOLUNA Batch 5.x Development guideline,
refer to a method to perform try-catch in ItemProcessor and Exception handling in tasklet model
for details.

Regarding significance of exit code

In this chapter, the exit codes are handled with two significances and explained
respectively.

• Exit codes of character strings like COMPLETED and FAILED are for jobs and
steps.

• Exit codes of numerals like 0, 255 are for Java processes.

Background, process overview and business specifications for Explanation of application to be
created are listed below.

9.4.5.1.1. Background

Some mass retail stores issue point cards for members.
Membership types include "Gold member", "Normal member" and the services are provided based
on membership type.
As a part of the service, 100 points are added for "gold members" and 10 points are added for
"normal members" at the end of the month, for the members who have purchased a product during
that month.

9.4.5.1.2. Process overview

TERASOLUNA Batch 5.x will be using an application as a monthly batch process which adds points
based on membership type.
A process to validate verification for checking whether the input data exceeds upper limit value of
points is additionally implemented. At the time of error, a warning message will be the output and
it will be skipped and the process is continued. At that time, an exit code which indicates the
skipping, is output.

9.4. Implementation of batch job | 575

9.4.5.1.3. Business specifications

Business specifications are as below.

• Check whether the input data points exceed 1,000,000 points

◦ When an error occurs during checking, a warning message log is output, target record is
skipped and process will continue

◦ When it is skipped, exit code is changed to "200" (SKIPPED) to indicate that the record is
skipped

• When the product purchasing flag is "1"(process target), points are added based on membership
type

◦ Add 100 points when membership type is "G"(gold member) and add 10 points when
membership type is "N"(Normal member)

• Product purchasing flag is updated to "0" (initial status) after adding points

• Upper limit of points is 1,000,000 points

• If the points exceed 1,000,000 after adding points, they are adjusted to 1,000,000 points.

9.4.5.1.4. Table specifications

Specifications of member information table acting as an input and output resource are shown
below.
Since it acts as an explanation for the job which accesses the database as per Premise, refer File
specifications for resource specifications of input and output in case of a job accessing the file.

Member information table (member_info)

N
o

Attribute
name

Column
name

PK Data type Numb
er of
digits

Explanation

1 Member ID id CHAR 8 Indicates a fixed 8 digit number which
uniquely identifies a member.

2 Membership
type

type - CHAR 1 Membership types are as shown below.
"G"(Gold member), "N"(Normal member)

3 Product
purchasing
flag

status - CHAR 1 Indicates whether you have purchased a
product within the month.
When the product is purchased, it is updated
to "1"(process target) and to "0"(initial status)
during monthly batch processing.

4 Point point - INT 7 Indicates points retained by the member.
Initial value is 0.

9.4.5.1.5. Job overview

Process flow and process sequence are shown below in order to understand the overview of the job
which performs input check created here.

576 | 9.4. Implementation of batch job

Since it acts as an explanation for the job which accesses database as per Premise, it must be noted
that parts different from that of process flow and process sequence in the case of a job accessing
file exist.

Process flow overview

Process flow overview is shown below.

Process flow for the job which performs exception handling

Process sequence in case of a chunk model

Process sequence in case of a chunk model is explained.
Since this job is explained assuming the usage of abnormal data, the sequence diagram indicates
that error (termination with warning) has occurred during input check.

Orange object indicates a class to be implemented at that time.

9.4. Implementation of batch job | 577

Sequence diagram of chunk model

Explanation of sequence diagram

1. A step is executed from the job.

2. Step opens a resource.

3. MyBatisCursorItemReader fetches all the member information (issue select statement) from
member_info table.

◦ Subsequent processing is repeated until the input data is exhausted.

◦ Start a framework transaction in chunk units.

◦ Repeat steps from 4 to 12 until the chunk size is achieved.

4. Step fetches 1 record of input data from MyBatisCursorItemReader.

5. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

6. member_info table returns input data to MyBatisCursorItemReader.

7. MyBatisCursorItemReader returns input data to step.

8. Step performs a process for input data by PointAddItemProcessor.

9. PointAddItemProcessor requests input check process to SpringValidator.

10. SpringValidator performs input check based on input check rules and throws an exception
(ValidationException) in case of a check error.

11. PointAddItemProcessor reads input data and adds points. Returns null when an exception
(ValidationException) is captured and skip error record.

578 | 9.4. Implementation of batch job

12. PointAddItemProcessor returns process results to the step.

13. Step outputs chunk size data by MyBatisBatchItemWriter.

14. MyBatisBatchItemWriter updates member information (issue update statement) for member_info
table.

15. Step commits a framework transaction.

16. Step executes ExitStatusChangeListener.

17. ExitStatusChangeListener sets SKIPPED as individual exit codes in StepExecution when input and
output data records are different.

18. Step returns exit code (here successful termination: 0) to job.

19. Job executes JobExitCodeChangeListener.

20. JobExitCodeChangeListener fetches exit code from StepExecution.

21. StepExecution returns exit code to JobExitCodeChangeListener.

22. JobExitCodeChangeListener returns SKIPPED (here termination with warning: 200) to job, as an
exit code for the final job.

Process sequence in case of a tasklet model

A process sequence in case of a tasklet model is explained.
Since the job is explained assuming usage of abnormal data, The sequence diagram shows a case
wherein an error occurs (termination with warning) in the input check.

Orange object indicates a class to be implemented at that time.

9.4. Implementation of batch job | 579

Process sequence diagram of tasklet model

Explanation of sequence diagram

1. A step is executed from the job.

◦ Step starts a framework transaction.

2. Step executes PointAddTasklet.

3. PointAddTasklet opens a resource.

4. MyBatisCursorItemReader fetches all the member information (issue select statement) from
member_info table.

◦ Repeat steps from 5 to 13 until input data is exhausted.

◦ Repeat the process from 5 to 11 until a fixed number of records is reached.

5. PointAddTasklet fetches 1 record of input data from MyBatisCursorItemReader.

6. MyBatisCursorItemReader fetches 1 record of input data from member_info table.

7. member_info table returns input data to MyBatisCursorItemReader.

8. MyBatisCursorItemReader returns input data to tasklet.

9. PointAddTasklet requests input check process to SpringValidator.

10. SpringValidator performs input check based on input check rules and throws an exception
(ValidationException) in case of a check error.

11. PointAddTasklet reads input data and adds points. Continue the process by "continue" when an

580 | 9.4. Implementation of batch job

exception (ValidationException) is cached and skip the error record.

◦ Continue the process from 5 without performing subsequent processes when the record is
skipped.

12. PointAddTasklet outputs a certain number of records by MyBatisBatchItemWriter.

13. MyBatisBatchItemWriter updates member information (issue update statement) for member_info
table.

14. PointAddTasklet sets SKIPPED as an individual exit code in StepExecution.

15. PointAddTasklet returns process termination to step.

16. Step commits a framework transaction.

17. Step returns exit code (here, successful termination: 0) to the job.

18. Step executes JobExitCodeChangeListener.

19. JobExitCodeChangeListener fetches exit code from StepExecution.

20. StepExecution returns exit code to JobExitCodeChangeListener.

21. Step returns exit code (here, termination with warning: 200) to the job.

About implementation of skipping using a process model

Skip process is implemented differently in the chunk model and tasklet model.

Chunk model

Implement try-catch in ItemProcessor and skip error data by returning null in
catch block. For skipping in ItemReader and ItemWriter, refer Skip.

Tasklet model

Implement try-catch in business logic and skip error data by continuing the
process in catch block by using "continue".

Respective implementation methods for chunk model and tasklet model are explained
subsequently.

• Implementation in chunk model

• Implementation in tasklet model

9.4.5.2. Implementation in chunk model

Implement processes from creation to execution of job which performs input check in the chunk
model, by the following procedure.

1. Adding message definition

2. Customising exit codes

3. Implementation of exception handling

4. Job execution and results verification

9.4. Implementation of batch job | 581

9.4.5.2.1. Adding message definition

Log message uses message definition and is used at the time of log output to make it easier to design
prevention of variations in the code system and extraction of keyword to be monitored.

Since it is used as common in the chunk model / tasklet model, it can be skipped if created already.

Set application-messages.properties and launch-context.xml as shown below.
launch-context.xml is already configured in TERASOLUNA Batch 5.x.

src/main/resources/i18n/application-messages.properties

(1)
errors.maxInteger=The {0} exceeds {1}.

src/main/resources/META-INF/spring/launch-context.xml

<!-- omitted -->

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource"
 p:basenames="i18n/application-messages" /> <!-- (2) -->

<!-- omitted -->

Explanation

Sr. No. Explanation

(1) Set the message to be output when the upper limit of points is exceeded.
Assign item name to {0) and upper limit value to {1}.

(2) Set MessageSource to use the message from the properties file.
Specify storage location of property file in basenames.

9.4.5.2.2. Customising exit codes

Customise exit codes of Java process at the end of job.
For details, refer Customising exit codes.

Implement following operations

1. Implementation of StepExecutionListener

2. Implementation of JobExecutionListener

3. Configuring Job Bean definition file

4. Mapping definition of exit codes

Implementation of StepExecutionListener

Use StepExecutionListener interface to change the exit code of step based on the condition.

582 | 9.4. Implementation of batch job

Here, implement a process to change exit code to SKIPPED when input data and output data records
are different as an implementation class of StepExecutionListener interface.

Note that, it is not necessary to create this class in the tasklet model since in Tasklet model,
individual exit codes can be set in StepExecution class in Tasklet implementation class.

org.terasoluna.batch.tutorial.common.listener.ExitStatusChangeListener

package org.terasoluna.batch.tutorial.common.listener;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.StepExecution;
import org.springframework.batch.core.StepExecutionListener;
import org.springframework.stereotype.Component;

@Component
public class ExitStatusChangeListener implements StepExecutionListener {

 @Override
 public void beforeStep(StepExecution stepExecution) {
 // do nothing.
 }

 @Override
 public ExitStatus afterStep(StepExecution stepExecution) {
 ExitStatus exitStatus = stepExecution.getExitStatus();
 if (conditionalCheck(stepExecution)) {
 exitStatus = new ExitStatus("SKIPPED"); // (1)
 }
 return exitStatus;
 }

 private boolean conditionalCheck(StepExecution stepExecution) {
 return (stepExecution.getWriteCount() != stepExecution.getReadCount()); // (2)
 }
}

Explanation

Sr. No. Explanation

(1) Set unique individual exit code according to execution results of skip.
Here, specify SKIPPED as an exit code at the time of skipping a record.

(2) Compare records of input data and output data to determine the record has been
skipped.
As records of input data and output data vary when a record is skipped, process of
skipping is determined by using difference in records. (1) is executed when the records
show variation.

9.4. Implementation of batch job | 583

Implementation of JobExecutionListener

Use JobExecutionListener interface and change exit codes of job based on conditions.
Here, implement a process to change exit code of final job in accordance with exit code of each
step, as an implementation class of JobExecutionListener interface.

org.terasoluna.batch.tutorial.common.listener.JobExitCodeChangeListener

package org.terasoluna.batch.tutorial.common.listener;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobExecutionListener;
import org.springframework.batch.core.StepExecution;
import org.springframework.stereotype.Component;

import java.util.Collection;

@Component
public class JobExitCodeChangeListener implements JobExecutionListener {

 @Override
 public void beforeJob(JobExecution jobExecution) {
 // do nothing.
 }

 @Override
 public void afterJob(JobExecution jobExecution) {
 Collection<StepExecution> stepExecutions = jobExecution.getStepExecutions();
 for (StepExecution stepExecution : stepExecutions) { // (1)
 if ("SKIPPED".equals(stepExecution.getExitStatus().getExitCode())) {
 jobExecution.setExitStatus(new ExitStatus("SKIPPED"));
 break;
 }
 }
 }
}

Explanation

Sr. No. Explanation

(1) Set exit code of final job in JobExecution according to execution results of job.
If the one of the exit codes returned from the step contains SKIPPED, exit code is
considered as considered as SKIPPED.

Configuring Job Bean definition file

Configuration of job Bean definition file for using the created listener is shown below.

584 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddChunk.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- omitted -->

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.chunk,
 org.terasoluna.batch.tutorial.common.listener"/> <!-- (1) -->

 <!-- omitted -->

 <batch:job id="jobPointAddChunk" job-repository="jobRepository">
 <batch:step id="jobPointAddChunk.step01">
 <batch:tasklet transaction-manager="jobTransactionManager">
 <batch:chunk reader="reader"
 processor="pointAddItemProcessor"
 writer="writer" commit-interval="10"/>
 </batch:tasklet>
 <batch:listeners>
 <batch:listener ref="exitStatusChangeListener"/> <!-- (2) -->
 </batch:listeners>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="jobExitCodeChangeListener"/> <!-- (3) -->
 </batch:listeners>
 </batch:job>

</beans>

Explanation

Sr. No. Explanation

(1) Configure the base package subjected to component scanning.
Specify additional packages containing implementation class of StepExecutionListener
and JobExecutionListener, in base-package attribute.

9.4. Implementation of batch job | 585

Sr. No. Explanation

(2) Configure implementation class of StepExecutionListener. Note that,
StepExecutionListener is an extended interface of StepListener.
Here, specify exitStatusChangeListener - a Bean ID of implementation class of
StepExecutionListener.

(3) Configure implementation class of JobExecutionListener.
Here, specify jobExitCodeChangeListener - a Bean ID of implementation class of
JobExecutionListener.

Difference in configuration locations of ExitStatusChangeListener and
JobExitCodeChangeListener

Since ExitStatusChangeListener attributes to StepListener which can interrupt the
process before and after the execution of step, configure in <batch:tasklet> tag by
using <batch:listeners> or <batch:listener> tag.
Since JobExitCodeChangeListener attributes to JobListener which can interrupt the
process before and after the execution of job, configure in <batch:job> tag by using
<batch:listeners> or <batch:listener> tag.

For details, refer Listener configuration.

Mapping definition of exit codes

Add mapping of exit codes.

Add a unique exit code in launch-context.xml as shown below.

src/main/resources/META-INF/spring/launch-context.xml

<!-- omitted -->

<bean id="exitCodeMapper"
class="org.springframework.batch.core.launch.support.SimpleJvmExitCodeMapper">
 <property name="mapping">
 <util:map id="exitCodeMapper" key-type="java.lang.String"
 value-type="java.lang.Integer">
 <!-- ExitStatus -->
 <entry key="NOOP" value="0" />
 <entry key="COMPLETED" value="0" />
 <entry key="STOPPED" value="255" />
 <entry key="FAILED" value="255" />
 <entry key="UNKNOWN" value="255" />
 <entry key="SKIPPED" value="200" /> <!-- (1) -->
 </util:map>
 </property>
</bean>

<!-- omitted -->

586 | 9.4. Implementation of batch job

Explanation

Sr. No. Explanation

(1) Add a unique exit code.
Specify SKIPPED as a key for mapping and 200 as a code value.

9.4.5.2.3. Implementation of exception handling

Implement try-catch processing in business logic class which adds the points.
Add implementation of try-catch processing to PointAddItemProcessor class which is implemented
already.

As it acts as an explanation at the time of job which accesses database as shown in Premise, only (1)
to (5) are added for the implementation at the time of a job accessing the file.

9.4. Implementation of batch job | 587

org.terasoluna.batch.tutorial.dbaccess.chunk.PointAddItemProcessor

// Package and the other import are omitted.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.item.validator.ValidationException;
import org.springframework.context.MessageSource;

import java.util.Locale;

@Component
public class PointAddItemProcessor implements ItemProcessor<MemberInfoDto,
MemberInfoDto> {
 // Definition of constants are omitted.

 private static final Logger logger = LoggerFactory.getLogger(
PointAddItemProcessor.class); // (1)

 @Inject
 Validator<MemberInfoDto> validator;

 @Inject
 MessageSource messageSource; // (2)

 @Override
 public MemberInfoDto process(MemberInfoDto item) throws Exception {
 try { // (3)
 validator.validate(item);
 } catch (ValidationException e) {
 logger.warn(messageSource
 .getMessage("errors.maxInteger", new String[] { "point", "1000000"
}, Locale.getDefault())); // (4)
 return null; // (5)
 }

 // The other codes of bussiness logic are omitted.
 }
}

Explanation

Sr. No. Explanation

(1) Define an instance of LoggerFactory in order to output a log.

(2) Inject an instance of MessageSource.

(3) Implement exception handling.
Enclose input check process by try-catch and handle ValidationException.

588 | 9.4. Implementation of batch job

Sr. No. Explanation

(4) Fetch a message with message ID errors.maxInteger from the property file and output in
a log.

(5) Return null in order to skip error code.

9.4.5.2.4. Job execution and results verification

Execute created job on STS and verify results.

Execute job from execution configuration

Execute the job from execution configuration already created and verify the results.

Here, the job is executed using abnormal data.
Since the method to change input data vary based on the resource (database or file) which handles
the job of implementing exception handling, execute as below.

When exception handling is implemented for the job which inputs or outputs data by accessing
database

Execute the job by using execution configuration created in Execute job from execution
configuration of the job which inputs or outputs data by accessing database.

Comment out script of normal data and cancel comment out of abnormal data script by Database
Initialize of batch-application.proeprties in order to use abnormal data.

src/main/resources/batch-application.proeprties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

When exception handling is implemented for the job which inputs or outputs data by accessing a file

Execute the job by using execution configuration created in Execute job from execution
configuration of the job which inputs or outputs data by accessing a file.

Change input file (inputFile) path from normal system data insert-member-info-data.csv to
abnormal system data (insert-member-info-error-data.csv), from the arguments configured by
execution configuration in order to use abnormal data.

Verifying console log

Open Console View and verify that logs of following contents are output.

• Exception should not occur

• Following message should be output as WARN log

◦ "The Point exceeds 1000000."

9.4. Implementation of batch job | 589

Console log output example

[2017/09/05 18:27:01] [main] [o.t.b.t.e.c.PointAddItemProcessor] [WARN] The point
exceeds 1000000.
[2017/09/05 18:27:01] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddChunk]] completed with the following parameters:
[{jsr_batch_run_id=450}] and the following status: [COMPLETED]
[2017/09/05 18:27:01] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@2145433b: startup
date [Tue Sep 05 18:26:57 JST 2017]; root of context hierarchy

Verifying exit codes

Verify that the process has terminated with warning by using exit codes.
For verification procedure, refer Job execution and results verification. Confirm that exit code (exit
value) is 200 (Termination with warning).

Verifying exit code

Verifying output resource

Verify output resource (database or file) by job which implements exception handling.

Since skipping process is implemented, verify that the records have been updated normally for the
records to be updated other than error records.

Verifying member information table

Verify member information table by using Data Source Explorer.
Compare the contents of member information table before and after update, and verify that the
contents are in accordance with the verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• All the records excluding error records (member id is "000000013")

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points are added according to membership type, for point addition

▪ 100 points when type column is "G"(gold member)

590 | 9.4. Implementation of batch job

▪ 10 points when type column is "N"(normal member)

• About error codes (member id is "000000013")

◦ Should not be updated

Contents of member information table before and after update are as shown below.

Details of member information table before and after update

Verifying member information file

Compare input and output contents of member information file, and verify that the contents are in
accordance with the verification details.

Verification details

• Member information file should be output in the output directory

◦ Output file: files/output/output-member-info-data.csv

• About all the records excluding error records (member id is "00000013")

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points are added according to membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

• Error records (member id is "00000013") should not be output

Input and output details of member information file are as shown below.
File fields are output in the sequence of id(member id), type(membership type), status(product
purchasing flag) and point(point).

9.4. Implementation of batch job | 591

Input and output details of member information file

9.4.5.3. Implementation in tasklet model

Processes from creation to execution of job which performs input check in tasklet model are
implemented by following procedure.

1. Adding message definition

2. Customizing exit codes

3. Implementation of exception handling

4. Job execution and results verification

9.4.5.3.1. Adding message definition

Log message uses message definition and is used at the time of log output to make it easier to design
prevention of variations in the code system and extraction of keyword to be monitored.

Since it is used in common, in the chunk model / tasklet model, it can be skipped if created already.

Configure application-messages.properties and launch-context.xml as shown below.
launch-context.xml is already configured in TERASOLUNA Batch 5.x.

src/main/resources/i18n/application-messages.properties

(1)
errors.maxInteger=The {0} exceeds {1}.

592 | 9.4. Implementation of batch job

src/main/resources/META-INF/spring/launch-context.xml

<!-- omitted -->

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource"
 p:basenames="i18n/application-messages" /> <!-- (2) -->

<!-- omitted -->

Explanation

Sr. No. Explanation

(1) Configure a message to be output when the upper limit of points is exceeded.
Assign item name to {0) and upper limit value to {1}.

(2) Set MessageSource to use the message from the property file.
Specify storage location of property file in basenames.

9.4.5.3.2. Customizing exit codes

Customize exit codes of java process at the time of termination of a job.
For details, refer Customize exit codes.

Implement following operations.

1. Implementation of JobExecutionListener

2. Configuring Job Bean definition file

3. Mapping definition of exit code

Implementation of JobExecutionListener

Use JobExecutionListener interface and change exit codes on job based on conditions.
Here, implement a process to change the exit codes of the final job in accordance with exit codes of
each step as an implementation class of JobExecutionListener interface.

9.4. Implementation of batch job | 593

org.terasoluna.batch.tutorial.common.listener.JobExitCodeChangeListener

package org.terasoluna.batch.tutorial.common.listener;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobExecutionListener;
import org.springframework.batch.core.StepExecution;
import org.springframework.stereotype.Component;

import java.util.Collection;

@Component
public class JobExitCodeChangeListener implements JobExecutionListener {

 @Override
 public void beforeJob(JobExecution jobExecution) {
 // do nothing.
 }

 @Override
 public void afterJob(JobExecution jobExecution) {
 Collection<StepExecution> stepExecutions = jobExecution.getStepExecutions();
 for (StepExecution stepExecution : stepExecutions) { // (1)
 if ("SKIPPED".equals(stepExecution.getExitStatus().getExitCode())) {
 jobExecution.setExitStatus(new ExitStatus("SKIPPED"));
 break;
 }
 }
 }
}

Explanation

Sr. No. Explanation

(1) Set exit code of final job in JobExecution in accordance with the execution results of the
job.
Here, when the exit codes returned from the step contain SKIPPED, exit code is
considered as SKIPPED.

Configuring Job Bean definition file

Configuration of Job Bean definition file for using created listener is shown below.

594 | 9.4. Implementation of batch job

src/main/resources/META-INF/jobs/dbaccess/jobPointAddTasklet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
 http://mybatis.org/schema/mybatis-spring
http://mybatis.org/schema/mybatis-spring.xsd">

 <!-- omitted -->

 <context:component-scan base-
package="org.terasoluna.batch.tutorial.dbaccess.tasklet,
 org.terasoluna.batch.tutorial.common.listener"/> <!-- (1) -->

 <!-- omitted -->

 <batch:job id="jobPointAddTasklet" job-repository="jobRepository">
 <batch:step id="jobPointAddTasklet.step01">
 <batch:tasklet transaction-manager="jobTransactionManager"
 ref="pointAddTasklet"/>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="jobExitCodeChangeListener"/> <!-- (2) -->
 </batch:listeners>
 </batch:job>

</beans>

Explanation

Sr. No. Explanation

(1) Configure a base package which is subjected to component scanning.
Specify additional packages containing implementation classes of StepExecutionListener
and JobExecutionListener, in base-package attribute.

(2) Configure implementation class of JobExecutionListener. Note that, JobExecutionListener
is an extended interface of JobListener.
Here, specify jobExitCodeChangeListener - a Bean ID of implementation class of
JobExecutionListener.

9.4. Implementation of batch job | 595

Mapping definition of exit code

Add mapping of exit codes.

Since it is used as common in chunk model / tasklet model, it can be skipped if implemented
already.

Add unique exit codes to launch-context.xml as shown below.

src/main/resources/META-INF/spring/launch-context.xml

<!-- omitted -->

<bean id="exitCodeMapper"
class="org.springframework.batch.core.launch.support.SimpleJvmExitCodeMapper">
 <property name="mapping">
 <util:map id="exitCodeMapper" key-type="java.lang.String"
 value-type="java.lang.Integer">
 <!-- ExitStatus -->
 <entry key="NOOP" value="0" />
 <entry key="COMPLETED" value="0" />
 <entry key="STOPPED" value="255" />
 <entry key="FAILED" value="255" />
 <entry key="UNKNOWN" value="255" />
 <entry key="SKIPPED" value="200" /> <!-- (1) -->
 </util:map>
 </property>
</bean>

<!-- omitted -->

Explanation

Sr. No. Explanation

(1) Add unique exit codes.
Specify SKIPPED to a key to be mapped and 200 to code value.

9.4.5.3.3. Implementation of exception handling

Implement try-catch processing in business logic class which adds the points.
Add implementation of try-catch process to PointAddItemProcessor class which is implemented
already.

Since it acts as an explanation in case of a job which accesses database as per Premise, add only (1)
to (5) for the implementation in case of a job accessing the file.

org.terasoluna.batch.tutorial.dbaccess.tasklet.PointAddTasklet

// Package and the other import are omitted.

import org.slf4j.Logger;

596 | 9.4. Implementation of batch job

import org.slf4j.LoggerFactory;
import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.item.validator.ValidationException;
import org.springframework.context.MessageSource;

import java.util.Locale;

@Component
public class PointAddTasklet implements Tasklet {
 // Definition of constans, ItemStreamReader and ItemWriter are omitted.

 private static final Logger logger = LoggerFactory.getLogger(PointAddTasklet.
class); // (1)

 @Inject
 Validator<MemberInfoDto> validator;

 @Inject
 MessageSource messageSource; // (2)

 @Override
 public RepeatStatus execute(StepContribution contribution, ChunkContext
chunkContext) throws Exception {
 MemberInfoDto item = null;

 List<MemberInfoDto> items = new ArrayList<>(CHUNK_SIZE);
 int errorCount = 0; // (3)

 try {
 reader.open(chunkContext.getStepContext().getStepExecution
().getExecutionContext());
 while ((item = reader.read()) != null) {
 try { // (4)
 validator.validate(item);
 } catch (ValidationException e) {
 logger.warn(messageSource
 .getMessage("errors.maxInteger", new String[] { "point",
"1000000" }, Locale.getDefault())); // (5)
 errorCount++;
 continue; // (6)
 }

 // The other codes of business logic are omitted.
 }

 writer.write(items);
 } finally {
 reader.close();
 }
 if (errorCount > 0) {
 contribution.setExitStatus(new ExitStatus("SKIPPED")); // (7)

9.4. Implementation of batch job | 597

 }
 return RepeatStatus.FINISHED;
 }
}

Explanation

Sr. No. Explanation

(1) Define an instance of LoggerFactory in order to output a log.

(2) Inject an instance of MessageSource.

(3) Provide a counter to determine occurrence of exception.
Increment when ValidationException is captured.

(4) Implement exception handling.
Enclose input check process by try-catch and handle ValidationException.

(5) Fetch a message with message ID errors.maxInteger from property file and output in a
log.

(6) Continue the process by "continue" to skip error records.

(7) Configure SKIPPED as a unique exit code.

9.4.5.3.4. Job execution and results verification

Execute created job on STS and verify results.

Execute job from execution configuration

Execute job from execution configuration created already and verify the results.

Here, execute job by using abnormal data.
Since how to change input data vary depending on resource (database or file) which handle job
implementing exception handling, execute as below.

When exception handling is implemented for a job which inputs or outputs data by accessing database

Execute job by using execution configuration created in Execute job from execution
configuration of a job which inputs or outputs data by accessing database.

Comment out script of normal data and cancel comment out of abnormal data script by Database
Initialize of batch-application.proeprties in order to use abnormal data.

src/main/resources/batch-application.proeprties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

When exception handling is implemented for a job which inputs or outputs data by accessing a file

598 | 9.4. Implementation of batch job

Execute job by using execution configuration created in Execute job from execution
configuration of a job which inputs or outputs data by accessing a file.

Change input file (inputFile) path from normal system data insert-member-info-data.csv to
abnormal system data (insert-member-info-error-data.csv), from the arguments configured by
execution configuration in order to use abnormal data

Verifying console log

Open Console View and verify that log of following details is output.

• Exception should not occur

• Following message should be output as a WARN log

◦ "The Point exceeds 1000000."

Console log output example

[2017/09/11 15:36:29] [main] [o.t.b.t.e.t.PointAddTasklet] [WARN] The point exceeds
1000000.
[2017/09/11 15:36:29] [main] [o.s.b.c.l.s.SimpleJobLauncher] [INFO] Job: [FlowJob:
[name=jobPointAddTasklet]] completed with the following parameters:
[{jsr_batch_run_id=468}] and the following status: [COMPLETED]
[2017/09/11 15:36:29] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@735f7ae5: startup
date [Mon Sep 11 15:36:27 JST 2017]; root of context hierarchy

Verifying exit codes

Verify that process is terminated with a warning, by using exit code.
For verification procedure, refer Job execution and results verification. Verify that exit code (exit
value) is 200 (Termination with warning).

Verifying exit codes

Verifying output resource

Verify output resource (database or file) by a job which implements exception handling.

Since skipping is implemented, verify that records are updated successfully, for the records to be
updated except for error records.

9.4. Implementation of batch job | 599

Verifying member information table

Verify member information table by using Data Source Explorer.
Compare contents of member information table before and after update, and verify that the
contents are in accordance with verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• For all records excluding error records (member ID is "000000013")

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points should be added according to membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

• About error records (member ID is "000000013")

◦ Should not be updated

Contents of member information table before and after update are as below.

Contents of member information table before and after update

Verifying member information file

Compare contents of input and output contents of member information file and verify that the
contents are in accordance with verification details.

Verification contents

• Member information file should be output in output directory

◦ Output file: files/output/output-member-info-data.csv

600 | 9.4. Implementation of batch job

• All the records excluding error records (member ID is "00000013")

◦ status column

▪ Records with "0"(initial status) should not exist

◦ point column

▪ Points should be added in accordance with membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

• Error records (member ID is "00000013") should not be output

Input and output contents of member information file are as below.
Fields of the file are output in the sequence of id (member ID), type (membership type), status
(product purchasing flag) and point(points).

Input and output details of member information file

9.4. Implementation of batch job | 601

9.4.6. Asynchronous execution type job

Premise

As explained in How to proceed with the tutorial, it is assumed that asynchronous
execution is performed for already created jobs. Note that, asynchronous
execution method includes Method which uses DB polling and Method which uses
Web container.
However, it must be noted that the description is for explanation of asynchronous
execution of job using DB polling.

9.4.6.1. Overview

Execute job asynchronously using DB polling.

Note that, since this section is based on TERASOLUNA Batch 5.x Development guideline, refer
Asynchronous execution (DB polling) for details.
Background, process overview and business specifications of the application to be created are
omitted as jobs are already created as per Premise.

Asynchronous execution of the job by using DB polling is subsequently explained by the following
procedure.

1. Preparation

2. Start asynchronous batch daemon

3. Register job information in job request table

4. Job execution results verification

5. Stopping asynchronous batch daemon

6. Verifying job execution status

9.4.6.2. Preparation

Implement preparation to perform asynchronous execution (DB polling).

Operations to be implemented are as given below.

1. Polling process setting

2. Job configuration

3. Input resource setting

9.4.6.2.1. Polling process setting

Configure settings required for asynchronous execution by batch-application.properties.
Since TERASOLUNA Batch 5.x is already configured, a detail explanation is omitted. For the
explanation of each item, refer polling process settings of Various settings.

602 | 9.4. Implementation of batch job

src/main/resources/batch-application.properties

TERASOLUNA AsyncBatchDaemon settings.
async-batch-daemon.scheduler.size=1
async-batch-daemon.schema.script=classpath:org/terasoluna/batch/async/db/schema-h2.sql
async-batch-daemon.job-concurrency-num=3
(1)
async-batch-daemon.polling-interval=5000
async-batch-daemon.polling-initial-delay=1000
(2)
async-batch-daemon.polling-stop-file-path=/tmp/stop-async-batch-daemon

Explanation

Sr.No. Explanation

(1) Set the polling cycle (milliseconds).
Here, specify 5000 milliseconds (5 seconds).

(2) Configure exit file path to stop asynchronous batch daemon.
Since this tutorial is based on the assumption that it is implemented in Windows
environment, stop-async-batch-daemon file is placed under C:\tmp in this configuration.

9.4.6.2.2. Job configuration

Job to be executed asynchronously is set to automaticJobRegistrar of async-batch-daemon.xml.

As an example, configuration which specify Job which inputs or outputs data by accessing database
(chunk model) is shown below.

9.4. Implementation of batch job | 603

src/main/resources/META-INF/spring/async-batch-daemon.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:task="http://www.springframework.org/schema/task"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/task
http://www.springframework.org/schema/task/spring-task.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- omitted -->

 <bean id="automaticJobRegistrar"
class="org.springframework.batch.core.configuration.support.AutomaticJobRegistrar">
 <property name="applicationContextFactories">
 <bean
class="org.springframework.batch.core.configuration.support.ClasspathXmlApplicationCon
textsFactoryBean"
 p:resources="classpath:/META-INF/jobs/dbaccess/jobPointAddChunk.xml"
/> <!-- (1) -->
 </property>
 <property name="jobLoader">
 <bean
class="org.springframework.batch.core.configuration.support.DefaultJobLoader"
 p:jobRegistry-ref="jobRegistry" />
 </property>
 </bean>

 <!-- omitted -->

</beans>

Explanation

Sr. No. Explanation

(1) Specify a Bean definition file of job targeted for asynchronous execution.
Wild cards (**/*) can also be used. Please refer to precautions in Job settings while
specifying a job.

604 | 9.4. Implementation of batch job

Considerations while designing a job

Since it is possible to execute the same job in parallel as a characteristic of
asynchronous execution (DB polling), it is necessary to prevent the impact of the
same job while executing the jobs in parallel.

In this tutorial, the same job ID is used for database access job and file access job.
Although these jobs are not executed in parallel, in this tutorial, it should be kept
in mind while designing a job since an error is likely to occur if multiple jobs with
the same job ID are specified.

9.4.6.2.3. Input resource setting

Set an input resource (database or file) while executing a job asynchronously.
Here, a job that uses normal data is executed.

Set an input resource for the job to access database and the job to access file.

In case of a job which accesses database

Set Database Initialize script of batch-application.proeprties as shown below.

src/main/resources/batch-application.proeprties

Database Initialize
tutorial.create-table.script=file:sqls/create-member-info-table.sql
tutorial.insert-data.script=file:sqls/insert-member-info-data.sql
#tutorial.insert-data.script=file:sqls/insert-member-info-error-data.sql

In case of a job which accesses a file

It must be verified in advance that the input file is deployed and output directory exists.

• Input file

◦ files/input/input-member-info-data.csv

• Output directory

◦ files/output/

Regarding preparation of data for input resource in this tutorial

In case of a job which accesses database, execute INSERT SQL while starting
asynchronous batch daemon (ApplicationContext generation) and prepare the
data in database.

In case of a job which accesses file, place input file in the directory, and specify
path of input/output file as the parameter part of the job information while
registering job information in the job request table.

9.4.6.3. Start asynchronous batch daemon

Start AsyncBatchDaemon provided by TERASOLUNA Batch 5.x.

9.4. Implementation of batch job | 605

Create the execution configuration as shown below and start asynchronous batch daemon.
Refer Create Run Configuration (Execution configuration) for the creation procedure.

Value to be set in Main tab of Run Configurations

Item name Value

Name Run Job With AsyncBatchDaemon
(Set any value)

Project terasoluna-batch-tutorial

Main class org.terasoluna.batch.async.db.AsyncBatchDaemon

When asynchronous batch daemon is started, polling process is executed within 5 seconds interval
(milliseconds specified in async-batch-daemon.polling-interval of batch-application.properties).
Output example of log is shown below.
This log shows that the polling process was executed three times.

Output example of console log

[2017/09/06 18:53:23] [main] [o.t.b.a.d.AsyncBatchDaemon] [INFO] Async Batch Daemon
start.

(.. omitted)

[2017/09/06 18:53:27] [main] [o.t.b.a.d.AsyncBatchDaemon] [INFO] Async Batch Daemon
will start watching the creation of a polling stop file. [Path:\tmp\stop-async-batch-
daemon]
[2017/09/06 18:53:27] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.
[2017/09/06 18:53:33] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.
[2017/09/06 18:53:38] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.

9.4.6.4. Register job information in job request table

Issue a SQL (INSERT statement) to register information for executing the job in job request table
(batch_job_request).

For table specifications of job request table, refer job request table structure of Table for polling.

How to execute SQL on STS is shown below.

SQL execution procedure

1. Display Data Source Explorer View
For how to display View, refer Preparation to refer database from STS.

606 | 9.4. Implementation of batch job

Data Source Explorer View

2. Open SQL Scrapbook
Right-click datasource and click "Open SQL Scrapbook".

9.4. Implementation of batch job | 607

SQL Scrapbook

3. Describe SQL
SQL for executing a job which accesses a database and a job which accesses a file are shown
below in chunk model example.

In case of a job which accesses database

SQL to be described is shown below.

SQL for execution request of job which accesses database

INSERT INTO batch_job_request(job_name,job_parameter,polling_status,create_date)
VALUES ('jobPointAddChunk', '', 'INIT', current_timestamp);

In case of a job which accesses a file

SQL to be described is shown below.

608 | 9.4. Implementation of batch job

SQL for execution request of a job which accesses a file

INSERT INTO batch_job_request(job_name,job_parameter,polling_status,create_date)
VALUES ('jobPointAddChunk', 'inputFile=files/input/input-member-info-
data.csv,outputFile=files/output/output-member_info_out.csv', 'INIT',
current_timestamp);

Image after SQL description is shown below.
Here, SQL for execution request of a job which accesses database is described.

SQL input

4. Execute SQL
As shown below, set Connection Profile of SQL Scrapbook, right-click on the margin and click →
[Execute All].
Connection Profile contents are based on contents set in Preparation which refers a database
from STS.

Execute SQL

9.4. Implementation of batch job | 609

5. Verify execution results of SQL
As shown in the diagram below, Status of SQL executed by SQL Results View is Succeeded.

Verify SQL execution results

6. Verify job request table
Verify that the information is registered for executing the job in job request table as shown in
the following diagram.
POLLING_STATUS is registered as INIT, however, when polling is already done, POLLING_STATUS is
POLLED or EXECUTED.
For the details of POLLING_STATUS, refer
<<Ch04_AsyncJobWithDB.adoc#Ch04_AsyncJobWithDB_Arch_RequireTable_PollingStatus,
Transition pattern of polling status (polling_status).

Verifying job request table

9.4.6.5. Job execution results verification

Verify execution results of a job for asynchronous execution.

9.4.6.5.1. Verifying console log

Open Console View and verify that log of following details is output.
Here, verify that the processing is completed (COMPLETED) and no exceptions have occurred.

610 | 9.4. Implementation of batch job

Console log output example

(.. omitted)

[2017/09/06 18:59:50] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.
[2017/09/06 18:59:55] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.
[2017/09/06 18:59:55] [daemonTaskExecutor-1] [o.s.b.c.l.s.SimpleJobOperator] [INFO]
Checking status of job with name=jobPointAddChunk
[2017/09/06 18:59:55] [daemonTaskExecutor-1] [o.s.b.c.l.s.SimpleJobOperator] [INFO]
Attempting to launch job with name=jobPointAddChunk and parameters=
[2017/09/06 18:59:55] [daemonTaskExecutor-1] [o.s.b.c.l.s.SimpleJobLauncher] [INFO]
Job: [FlowJob: [name=jobPointAddChunk]] launched with the following parameters:
[{jsr_batch_run_id=117}]
[2017/09/06 18:59:55] [daemonTaskExecutor-1] [o.s.b.c.j.SimpleStepHandler] [INFO]
Executing step: [jobPointAddChunk.step01]
[2017/09/06 18:59:55] [daemonTaskExecutor-1] [o.s.b.c.l.s.SimpleJobLauncher] [INFO]
Job: [FlowJob: [name=jobPointAddChunk]] completed with the following parameters:
[{jsr_batch_run_id=117}] and the following status: [COMPLETED]
[2017/09/06 19:00:00] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.
[2017/09/06 19:00:05] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing

9.4.6.5.2. Verifying exit codes

In the case of asynchronous execution, it is not possible to check exit code if the job is been
executed on IDE.
Check job execution status with Verifying job execution status.

9.4.6.5.3. Verifying output resource

Verify output resource (database or file) according to the executed job.

In case of a job which accesses database

Compare contents of member information table before and after update and verify that the
contents are in accordance with verification details.
For verification procedure, refer Refer database by using Data Source Explorer.

Verification details

• status column

◦ Records with "0"(initial status) should not exist

• point column

◦ Points should be added according to membership type, for point addition

▪ 100 points when type column is "G"(gold member)

▪ 10 points when type column is "N"(normal member)

9.4. Implementation of batch job | 611

◦ Records exceeding 1,000,000 points (upper limit value) should not exist

Contents of member information table before and after update are shown below.

Contents of member information table before and after update

In case of a job which accesses a file

Compare input and output details of member information file and verify that the contents are in
accordance with verification details.

Verification details

• Member information file should be output in the output directory

◦ Output file: files/output/output-member-info-data.csv

• status field

◦ Records with "0"(initial status) should not exist

• point field

◦ Points should be added according to membership type, for point addition

▪ 100 points when type field is "G"(gold member)

▪ 10 points when type field is "N"(normal member)

◦ Records with points exceeding 1,000,000(upper limit value) should not exist

Input and output details of member information file are shown below.
File fields are output in the sequence of id(member id), type(membership type), status(product
purchasing flag) and point(point).

612 | 9.4. Implementation of batch job

Input and output details of member information file

9.4.6.6. Stopping asynchronous batch daemon

Create an exit file and stop asynchronous batch daemon.

Create stop-async-batch-daemon file(blank file) in C:\tmp as per the settings done in
[Ch09_AsyncExecutionJob_Preparation_Properties].

Create exit file

Verify that asynchronous batch daemon is stopped as shown below in STS console.

9.4. Implementation of batch job | 613

Verify termination of asynchronous batch daemon

(.. omitted)

[2017/09/08 21:41:41] [daemonTaskScheduler-1] [o.t.b.a.d.JobRequestPollTask] [INFO]
Polling processing.
[2017/09/08 21:41:44] [main] [o.t.b.a.d.AsyncBatchDaemon] [INFO] Async Batch Daemon
has detected the polling stop file, and then shutdown now!
[2017/09/08 21:41:44] [main] [o.s.c.s.ClassPathXmlApplicationContext] [INFO] Closing
org.springframework.context.support.ClassPathXmlApplicationContext@6b2fad11: startup
date [Fri Sep 08 21:41:01 JST 2017]; root of context hierarchy
[2017/09/08 21:41:44] [main]
[o.s.b.c.c.s.GenericApplicationContextFactory$ResourceXmlApplicationContext] [INFO]
Closing ResourceXmlApplicationContext:file:/C:/dev/workspace/tutorial/terasoluna-
batch-tutorial/target/classes/META-INF/jobs/dbaccess/jobPointAddChunk.xml
[2017/09/08 21:41:44] [main] [o.s.c.s.DefaultLifecycleProcessor] [INFO] Stopping
beans in phase 0
[2017/09/08 21:41:44] [main] [o.t.b.a.d.JobRequestPollTask] [INFO] JobRequestPollTask
is called shutdown.
[2017/09/08 21:41:44] [main] [o.s.s.c.ThreadPoolTaskScheduler] [INFO] Shutting down
ExecutorService 'daemonTaskScheduler'
[2017/09/08 21:41:44] [main] [o.s.s.c.ThreadPoolTaskExecutor] [INFO] Shutting down
ExecutorService
[2017/09/08 21:41:44] [main] [o.t.b.a.d.AsyncBatchDaemon] [INFO] Async Batch Daemon
stopped after all jobs completed.

9.4.6.7. Verifying job execution status

Verify job status and execution results in metadata table of JobRepository. Here, refer
batch_job_execution.

SQL to verify job status is shown below.

SQL for verifying job status

SELECT job_execution_id,start_time,end_time,exit_code FROM batch_job_execution WHERE
job_execution_id =
(SELECT max(job_execution_id) FROM batch_job_request WHERE job_execution_id IS NOT
NULL);

In this SQL, execution status of the last job is fetched.

SQL execution results can be verified in SQL Results View displayed after execution of SQL on IDE.
Verify that EXIT_CODE is COMPLETED as shown in the diagram below.

614 | 9.4. Implementation of batch job

Verify job status

9.4. Implementation of batch job | 615

9.5. Conclusion
We will learn following contents in this tutorial.

How to implement a basic batch job using TERASOLUNA Batch 5.x

• A job that performs data input and output by accessing a database

• A job that performs data input and output by accessing a file

• A job that validates input data

• A job that performs exception handling by ChunkListener

• A job that performs exception handling by try-catch

• Asynchronous execution type job

Note that, TERASOLUNA Batch 5.x should be used and the guidelines mentioned in Precautions
while using should be followed while developing a batch application.

616 | 9.5. Conclusion

Chapter 10. Summary of points

10.1. Notes on TERASOLUNA Batch 5.x
This is a summarized list of the rules and notes about using TERASOLUNA Batch 5.x that are
explained in each section. Users should keep in mind the following points and proceed when
developing a batch application.

Only important points are mentioned here, and all the points are not covered.
Users should read the functions to be used.

Rules and notes to be considered for batch process

• Single batch process should be simplified and complex logical structures should be avoided.

• Same operation should not be performed in multiple jobs over and over again.

• Usage of system resources should be minimized, unnecessary physical I/O should be avoided
and on-memory operations should be utilized.

Guidelines for TERASOLUNA Batch 5.x

• Development of batch application

◦ Create as 1 job=1 Bean definition(1 job definition)

◦ Create as 1 step=1 batch process=1 business logic

• Chunk model

◦ Use it for efficiently processing large amount of data.

• Tasklet model

◦ Use for simple processing, processing that is hard to standardize, and to process data by
single commit.

• Synchronous job

◦ Use for starting a job as per the schedule and for batch processing by combining multiple
jobs.

• Asynchronous job(DB polling)

◦ Use for delayed process, continuous execution of job with short processing time and
consolidation of large jobs.

• Asynchronous job (Web container)

◦ Similar to DB polling. However, use when instantaneous start is required.

• Management of JobRepository

◦ In Spring Batch, use JobRepository for recording start status and execution result of job.

◦ In TERASOLUNA Batch 5.x, persistence is optional if it corresponds to all the following.

10.1. Notes on TERASOLUNA Batch 5.x | 617

▪ Using TERASOLUNA Batch 5.x for executing synchronous job only.

▪ All job execution management including stop, restart of job is assigned to the job
scheduler.

▪ Do not use restart where the JobRepository possessed by Spring Batch is a
prerequisite.

◦ When these are applicable, use H2 which is an in-memory and built-in database as an
option of RDBMS used by JobRepository. On the other hand, when using asynchronous job
or stop and restart by Spring Batch, RDBMS that can make the job execution status and
result permanent, is required.
For this point, Job management should also be read.

How to choose chunk model or tasklet model

• Chunk model

◦ When you want to steadily process large amount of data

◦ When you want to restart based on the record count

• Tasklet model

◦ When you want to make recovery as simple as possible

◦ When you want to consolidate the process contents

How to choose chunk model or tasklet model should also be read.

Unification of bean scope

• In the Tasklet implementation, match with the scope of component to be Injected.

• Composite type component matches with the scope of component to be delegated.

• When using JobParameter, set to the scope of step.

• If you want to save instance variables in Step unit, set to the scope of step.

Performance tuning points

• Adjust chunk size

◦ When using Chunk, set the number of commits to an appropriate size. Do not increase the
size too much.

• Adjust fetch size

◦ In database access, set fetch size to an appropriate size. Do not increase the size too much.

• Make file reading more efficient

◦ Provide a dedicated FieldSetMapper interface implementation.

• Parallel process and multiple processes

618 | 10.1. Notes on TERASOLUNA Batch 5.x

◦ Implement by job scheduler.

• Distributed processing

◦ Implement by job scheduler.

Asynchronous job (DB polling)

• Usage of in-memory database

◦ It is not suitable for long-term continuous operation so it is desirable to restart it
periodically.

◦ When it is to be used for long-term continuous operation, maintenance work such as
periodically deleting data from JobRepository is required.

• Narrow-down of registered job

◦ Specify the designed and implemented job based on asynchronous execution.

• Mass processing of very short batch is not suitable since performance deterioration is possible.

• Since parallel execution of the same job is possible, it is necessary to prevent the same job from
affecting in parallel execution

Asynchronous job (Web container)

• The basic consideration is same as Asynchronous job (DB polling).

• Adjust thread pool.

◦ Apart from the thread pool of asynchronous execution, it is necessary to consider the
request thread of the Web container and other applications operating within the same unit.

• In Web and batch, you cannot cross-reference data source, MyBatis setting and Mapper
interface.

• Failure to start a job due to thread pool exhaustion cannot be captured at job start, so provide a
means to confirm it separately.

Database access and transaction

• "Use MyBatisBatchItemWriter in ItemWriter" and "Update reference using Mapper interface in
ItemProcessor" cannot be done at the same time.

◦ There is a restriction that MyBatis should not be executed with two or more ExecutorType in
the same transaction. Refer to Mapper interface (Input).

• Notes on input/output of database to the same table

◦ As the result of losing the information that guarantees reading consistency due to output
(issue of UPDATE), error may occur in the input (SELECT). Consider the following measures.

▪ It depends on the database so, increase the area to secure the information.

▪ Split the input data and perform multiple processing.

10.1. Notes on TERASOLUNA Batch 5.x | 619

File access

• When dealing with the following fixed-length file, be sure to use the component provided by
TERASOLUNA Batch 5.x.

◦ Fixed-length file containing multibyte characters

◦ Fixed length file without line break

• When skipping footer records, it is necessary to process with OS command.

Exclusive control

• When multiple jobs are concurrently executed, design a job so that the exclusive control is not
required.

◦ Resources to be accessed and processing targets should be split for each job.

• Design in such a way that deadlocks are prevented from occurring.

• File exclusive control should be implemented in the tasklet model.

Handling abnormal system

• Do not perform transaction processing in exception handling.

• Note that ChunkListener behaves differently by the process model.

◦ The exceptions generated by opening and closing the resources are

▪ Chunk model: Not in the scope of catching by ChunkListener interface.

▪ Tasklet model: In the scope of catching by ChunkListener interface.

• An input check error cannot be recovered even after a restart unless the input resource causing
the check error is corrected.

• How to cope when a failure occurs in JobRepository should be considered.

About ExecutionContext

• Since ExecutionContext is stored in the JobRepository, there are following restrictions.

◦ The object to be stored in ExecutionContext should be the class that implements
java.io.Serializable.

◦ There should be a limit in the size that can be stored.

Exit code

• Exit code at the time of forced termination of Java process and the exit code of batch application
are clearly distinguished.

◦ It is strictly prohibited to set the exit code of process to 1 by batch application.

620 | 10.1. Notes on TERASOLUNA Batch 5.x

Parallel processing and multiple processing

• Do not use Multi Thread Step.

• Depending on the processing content, be careful to possibility of resource contention and
deadlock

10.1. Notes on TERASOLUNA Batch 5.x | 621

	TERASOLUNA Batch Framework for Java (5.x) Development Guideline
	Table of Contents
	Chapter 1. Introduction
	1.1. Terms of Use
	1.1.1. Reference
	1.1.1.1. Macchinetta-Terms of use

	1.2. Introduction
	1.2.1. Objective of guideline
	1.2.2. Target readers
	1.2.3. Structure of guideline
	1.2.4. How to read guideline
	1.2.4.1. Notations in guideline

	1.2.5. Tested environments of guideline

	1.3. Change Log

	Chapter 2. TERASOLUNA Batch Framework for Java (5.x) concept
	2.1. Batch Processing in General
	2.1.1. Introduction to Batch Processing
	2.1.2. Requirements for batch processing
	2.1.3. Rules and precautions to be considered in batch processing

	2.2. TERASOLUNA Batch Framework for Java (5.x) stack
	2.2.1. Overview
	2.2.2. TERASOLUNA Batch Framework for Java (5.x) stack
	2.2.2.1. OSS version to be used

	2.2.3. Structural elements of TERASOLUNA Batch Framework for Java (5.x)
	A function wherein TERASOLUNA Batch Framework for Java (5.x) provides implementation

	2.3. Spring Batch Architecture
	2.3.1. Overview
	2.3.1.1. What is Spring Batch
	2.3.1.2. Hello, Spring Batch！
	2.3.1.3. Basic structure of Spring Batch

	2.3.2. Architecture
	2.3.2.1. Overall process flow
	2.3.2.2. Running a Job
	2.3.2.3. Execution of business logic
	2.3.2.3.1. Chunk model
	2.3.2.3.2. Tasket model

	2.3.2.4. Metadata schema of JobRepository
	2.3.2.4.1. Version
	2.3.2.4.2. ID (Sequence) definition
	2.3.2.4.3. Table definition
	2.3.2.4.4. DDL script

	2.3.2.5. Typical performance tuning points

	2.4. Architecture of TERASOLUNA Batch Framework for Java (5.x)
	2.4.1. Overview
	2.4.2. Structural elements of job
	2.4.2.1. Job
	2.4.2.2. Step

	2.4.3. How to implement Step
	2.4.3.1. Chunk model
	2.4.3.2. Tasklet model
	2.4.3.3. Functional difference between chunk model and Tasklet model

	2.4.4. Running a job method
	2.4.4.1. Synchronous execution method
	2.4.4.2. Asynchronous execution method
	2.4.4.2.1. Asynchronous execution method (DB polling)
	2.4.4.2.2. Asynchronous execution method (Web container)

	2.4.5. Points to be considered while using

	Chapter 3. Methodology of application development
	3.1. Development of batch application
	3.1.1. What is blank project
	3.1.2. Creation of project
	3.1.3. Project structure
	3.1.4. Flow of development
	3.1.4.1. Import to IDE
	3.1.4.2. Setting of entire application
	3.1.4.2.1. Project information of pom.xml
	3.1.4.2.2. Database related settings

	3.1.5. Creation of job
	3.1.6. Build and execution of project
	3.1.6.1. Build of application
	3.1.6.2. Switching of configuration file according to the environment
	3.1.6.2.1. Execution of application

	3.2. Creation of chunk model job
	3.2.1. Overview
	3.2.1.1. Components

	3.2.2. How to use
	3.2.2.1. Job configuration
	3.2.2.2. Implementation of components
	3.2.2.2.1. Implementation of ItemProcessor

	3.3. Creation of tasklet model job
	3.3.1. Overview
	3.3.1.1. Components

	3.3.2. HowToUse
	3.3.2.1. Job configuration
	3.3.2.2. Implementation of tasklet
	3.3.2.3. Implementation of simple tasklet
	3.3.2.4. Implementation of tasklet using the components of chunk model

	3.4. Distinguish between chunk model and tasklet model

	Chapter 4. Running a job
	4.1. Synchronous job
	4.1.1. Overview
	4.1.2. How to use
	4.1.2.1. How to run
	4.1.2.2. Options

	4.2. Job parameters
	4.2.1. Overview
	4.2.2. How to use
	4.2.2.1. Regarding parameter conversion class
	4.2.2.2. Assign from command-line arguments
	4.2.2.3. Redirect from file to standard input
	4.2.2.4. Set the default value of parameter
	4.2.2.5. Validation of parameters
	4.2.2.5.1. Simple validation
	4.2.2.5.2. Complex validation

	4.2.3. How to extend
	4.2.3.1. Using parameters and properties together

	4.3. Asynchronous execution (DB polling)
	4.3.1. Overview
	4.3.1.1. What is asynchronous execution by using DB polling?
	4.3.1.1.1. Functions offered by TERASOLUNA Batch 5.x
	4.3.1.1.2. Usage scene

	4.3.2. Architecture
	4.3.2.1. Processing sequence of DB polling
	4.3.2.2. About the table to be polled
	4.3.2.2.1. Job-request-table structure
	4.3.2.2.2. Job request sequence structure
	4.3.2.2.3. Transition pattern of polling status (polling_status)
	4.3.2.2.4. Job request fetch SQL

	4.3.2.3. About job running
	4.3.2.4. When abnormality is detected in DB polling process
	4.3.2.4.1. Database connection failure
	4.3.2.4.2. Abnormal termination of asynchronous batch daemon process

	4.3.2.5. Stopping DB polling process
	4.3.2.6. About application configuration specific to asynchronous execution
	4.3.2.6.1. ApplicationContext configuration
	4.3.2.6.2. Bean definition structure

	4.3.3. How to use
	4.3.3.1. Various settings
	4.3.3.1.1. Settings for polling process
	4.3.3.1.2. Job settings

	4.3.3.2. From start to end of asynchronous execution
	4.3.3.2.1. Start of asynchronous batch daemon
	4.3.3.2.2. Job request
	4.3.3.2.3. Stopping asynchronous batch daemon

	4.3.3.3. Confirm job status
	4.3.3.4. Recovery after a job is terminated abnormally
	4.3.3.4.1. Re-run
	4.3.3.4.2. Restart
	4.3.3.4.3. Termination

	4.3.3.5. About environment deployment
	4.3.3.6. Evacuation of cumulative data

	4.3.4. How to extend
	4.3.4.1. Customising Job-request-table
	4.3.4.1.1. Example of controlling job execution sequence by priority column
	4.3.4.1.2. Distributed processing by multiple processes using a group ID

	4.3.4.2. Customization of clock used in timestamp
	4.3.4.3. Multiple runnings

	4.3.5. Appendix
	4.3.5.1. About modularization of job definition

	4.4. Asynchronous execution (Web container)
	4.4.1. Overview
	4.4.2. Architecture
	4.4.2.1. About detection of abnormality occurrence at the time of running a job
	4.4.2.2. Application configuration of asynchronous execution (Web container)
	4.4.2.2.1. ApplicationContext configuration

	4.4.3. How to use
	4.4.3.1. Overview of implementation of application by asynchronous execution (Web container)
	4.4.3.2. Various settings
	4.4.3.3. Implementation of Web application
	4.4.3.3.1. Web application settings
	4.4.3.3.2. Implementation of JavaBeans used in Controller
	4.4.3.3.3. Implementation of controller
	4.4.3.3.4. Integration of Web/batch application module setting
	4.4.3.3.5. Build
	4.4.3.3.6. Deploy

	4.4.3.4. Job start and confirmation of execution results using REST Client

	4.4.4. How to extend
	4.4.4.1. Stopping and restarting jobs
	4.4.4.2. Multiple running

	4.5. Listener
	4.5.1. Overview
	4.5.1.1. Types of listener
	4.5.1.1.1. JobListener
	4.5.1.1.2. StepListener

	4.5.2. How to use
	4.5.2.1. Implementation of a listener
	4.5.2.1.1. When an interface is to be implemented
	4.5.2.1.2. When annotations are assigned

	4.5.2.2. Listener settings
	4.5.2.2.1. Setting multiple listeners

	4.5.2.3. How to choose an interface or an annotation
	4.5.2.4. Exception occurred in pre-processing with StepExecutionListener
	4.5.2.5. Job abort in preprocess (StepExecutionListener#beforeStep())

	Chapter 5. Input/Output of Data
	5.1. Transaction control
	5.1.1. Overview
	5.1.1.1. About the pattern of transaction control in general batch processing

	5.1.2. Architecture
	5.1.2.1. Transaction control in Spring Batch
	5.1.2.1.1. Transaction control mechanism in chunk model
	5.1.2.1.2. Mechanism of transaction control in tasklet model
	5.1.2.1.3. Selection policy for model-specific transaction control

	5.1.2.2. Difference in transaction control for each execution method
	5.1.2.2.1. About transaction of DB polling
	5.1.2.2.2. About the transaction of WebAP server process

	5.1.3. How to use
	5.1.3.1. For a single data source
	5.1.3.1.1. Implement transaction control
	5.1.3.1.2. Note for non-transactional data sources

	5.1.3.2. For multiple data sources
	5.1.3.2.1. Input from multiple data source
	5.1.3.2.2. Output to multiple data sources(multiple steps)
	5.1.3.2.3. Output to multiple data sources(single step)

	5.1.3.3. Notes on intermediate method commit

	5.2. Database Access
	5.2.1. Overview
	5.2.2. How to use
	5.2.2.1. Common Settings
	5.2.2.1.1. DataSource Setting
	5.2.2.1.2. MyBatis Setting
	5.2.2.1.3. Mapper XML definition
	5.2.2.1.4. MyBatis-Spring setting

	5.2.2.2. Input
	5.2.2.2.1. MyBatisCursorItemReader

	5.2.2.3. Mapper interface (Input)
	5.2.2.3.1. How to use in tasklet model::

	5.2.2.4. Output
	5.2.2.4.1. MyBatisBatchItemWriter
	5.2.2.4.2. Mapper interface (Output)

	5.2.2.5. Database access with Listener

	5.2.3. How To Extend
	5.2.3.1. Updating multiple tables in CompositeItemWriter
	5.2.3.2. How to specify search condition

	5.3. File Access
	5.3.1. Overview
	5.3.1.1. Type of File which can be handled
	5.3.1.2. A component that inputs and outputs a flat file

	5.3.2. How To Use
	5.3.2.1. Variable-length record
	5.3.2.1.1. Input
	5.3.2.1.2. Output

	5.3.2.2. Fixed-length record
	5.3.2.2.1. Input
	5.3.2.2.2. Output

	5.3.2.3. Single String record
	5.3.2.3.1. Input
	5.3.2.3.2. Output

	5.3.2.4. Header and Footer
	5.3.2.4.1. Input
	5.3.2.4.2. Output

	5.3.2.5. Multiple Files
	5.3.2.5.1. Input
	5.3.2.5.2. Output

	5.3.2.6. Control Break

	5.3.3. How To Extend
	5.3.3.1. Implmementation of FieldSetMapper
	5.3.3.2. XML File
	5.3.3.2.1. Input
	5.3.3.2.2. Output

	5.3.3.3. Multi format
	5.3.3.3.1. Input
	5.3.3.3.2. Output

	5.4. Exclusive Control
	5.4.1. Overview
	5.4.1.1. Necessity of Exclusive Control
	5.4.1.2. Exclusive Control for File
	5.4.1.3. Exclusive Control of Database
	5.4.1.4. Choose Exclusive Control Scheme
	5.4.1.5. Relationship between Exclusive Control and Components

	5.4.2. How to use
	5.4.2.1. Exclusive Control of file
	5.4.2.2. Exclusive Control of Database
	5.4.2.2.1. Optimistic Lock
	5.4.2.2.2. Pessimistic Lock

	Chapter 6. Support to abnormal system
	6.1. Input Check
	6.1.1. Overview
	6.1.1.1. Classification of input validation
	6.1.1.2. Overview of Input Validation

	6.1.2. How to use
	6.1.2.1. Various settings
	6.1.2.2. Input validation rule definition
	6.1.2.3. Input validation execution
	6.1.2.4. Input validation error handling
	6.1.2.4.1. Abnormal Termination of Processing
	6.1.2.4.2. Skipping Error Records
	6.1.2.4.3. Setting the exit code
	6.1.2.4.4. Output of error messages

	6.2. Exception handling
	6.2.1. Overview
	6.2.1.1. Classification of exception
	6.2.1.2. Exception type
	6.2.1.2.1. Business exception
	6.2.1.2.2. Library exception occurring during normal operation
	6.2.1.2.3. System exception
	6.2.1.2.4. Unexpected system exception
	6.2.1.2.5. Fatal error
	6.2.1.2.6. Invalid job request error

	6.2.1.3. How to handle exceptions
	6.2.1.3.1. Skip
	6.2.1.3.2. Retry
	6.2.1.3.3. Process interruption

	6.2.2. How to use
	6.2.2.1. Step unit exception handling
	6.2.2.1.1. Exception handling with ChunkListener interface
	6.2.2.1.2. Exception handling in chunk model
	6.2.2.1.3. Exception handling in tasklet model

	6.2.2.2. Job-level exception handling
	6.2.2.3. Determination as to whether processing can be continued
	6.2.2.3.1. Skip
	6.2.2.3.2. Retry
	6.2.2.3.3. Process interruption

	6.2.3. Appendix
	6.2.3.1. About reason why <skippable-exception-classes> is not used

	6.3. Restart processing
	6.3.1. Overview
	6.3.2. How to use
	6.3.2.1. Job rerun
	6.3.2.2. Job restart
	6.3.2.3. Stateless restart
	6.3.2.4. Stateful restart

	Chapter 7. Job Management
	7.1. Overview
	7.1.1. What is Job Execution Management?
	7.1.1.1. Functions Offered by Spring Batch

	7.2. How to use
	7.2.1. Job Status Management
	7.2.1.1. Status Persistence
	7.2.1.2. Confirmation of job status/execution result
	7.2.1.2.1. Query directly
	7.2.1.2.2. Use JobExplorer

	7.2.1.3. Stopping a Job

	7.2.2. Customizing Exit Codes
	7.2.2.1. Change exit codes of step
	7.2.2.2. Change exit code of job
	7.2.2.3. Mapping of exit codes

	7.2.3. Double Activation Prevention
	7.2.4. Logging
	7.2.4.1. Clarification of log output source
	7.2.4.2. Log Monitoring
	7.2.4.3. Log Output Destination

	7.2.5. Message Management

	Chapter 8. Flow control and parallel, multiple processing
	8.1. Flow control
	8.1.1. Overview
	8.1.2. How to use
	8.1.2.1. Sequential flow
	8.1.2.2. Passing data between steps
	8.1.2.2.1. Data passing between steps using tasklet model
	8.1.2.2.2. Data passing between steps using the chunk model

	8.1.3. How to extend
	8.1.3.1. Conditional branching
	8.1.3.2. Stop condition

	8.2. Parallel processing and multiple processing
	8.2.1. Overview
	8.2.1.1. Parallel processing and multiple processing by job scheduler
	8.2.1.1.1. Parallel processing of jobs using job scheduler
	8.2.1.1.2. Multiple processing of jobs using job scheduler

	8.2.2. How to use
	8.2.2.1. Parallel Step (Parallel processing)
	8.2.2.2. Partitioning Step (Multiple processing)
	8.2.2.2.1. When number of partitionings are variable
	8.2.2.2.2. When number of partitionings are fixed

	Chapter 9. Tutorial
	9.1. Introduction
	9.1.1. Objective of the tutorial
	9.1.2. Target readers
	9.1.3. Verification environment
	9.1.4. Overview of framework
	9.1.5. How to proceed with the tutorial

	9.2. Description of the application to be created
	9.2.1. Background
	9.2.2. Process overview
	9.2.3. Business specifications
	9.2.4. Learning contents

	9.3. Environment construction
	9.3.1. Creating a project
	9.3.2. Import project
	9.3.3. Build project
	9.3.4. Verify / edit setup file
	9.3.4.1. Verify setup file
	9.3.4.2. Editing setting file

	9.3.5. Preparation of input data
	9.3.5.1. Input data of jobs which inputs or outputs data by accessing database
	9.3.5.1.1. Create table and initial data insertion script
	9.3.5.1.2. Adding settings which executes script automatically while executing a job

	9.3.5.2. Input data for a job which inputs or outputs data by accessing the file

	9.3.6. Preparation to refer database from STS
	9.3.7. Verify operations of project
	9.3.7.1. Execute job in STS
	9.3.7.1.1. Creating Run Configuration (Execution configuration)
	9.3.7.1.2. Job execution and results verification

	9.3.7.2. Refer a database by using Data Source Explorer

	9.4. Implementation of batch job
	9.4.1. A job which inputs or outputs data by accessing a database
	9.4.1.1. Overview
	9.4.1.1.1. Background
	9.4.1.1.2. Process overview
	9.4.1.1.3. Business specifications
	9.4.1.1.4. Table specifications
	9.4.1.1.5. Job overview

	9.4.1.2. Implementation in chunk model
	9.4.1.2.1. Creating job Bean definition file
	9.4.1.2.2. Implementation of DTO
	9.4.1.2.3. Defining database access by using MyBatis
	9.4.1.2.4. Implementation of logic
	9.4.1.2.5. Job execution and results verification

	9.4.1.3. Implementation in tasklet model
	9.4.1.3.1. Creating job Bean definition file
	9.4.1.3.2. Implementation of DTO
	9.4.1.3.3. Defining database access by using MyBatis
	9.4.1.3.4. Implementation of logic
	9.4.1.3.5. Verifying execution of job and results

	9.4.2. A job which inputs or outputs data by accessing a file
	9.4.2.1. Overview
	9.4.2.1.1. Background
	9.4.2.1.2. Process overview
	9.4.2.1.3. Business specifications
	9.4.2.1.4. File specifications
	9.4.2.1.5. Job overview

	9.4.2.2. Implementation in chunk model
	9.4.2.2.1. Creating a job Bean definition file
	9.4.2.2.2. DTO implementation
	9.4.2.2.3. Defining file access
	9.4.2.2.4. Implementation of logic
	9.4.2.2.5. Job execution

	9.4.2.3. Implementation in tasklet model
	9.4.2.3.1. Creating job Bean definition file
	9.4.2.3.2. Implementation of DTO
	9.4.2.3.3. Defining file access
	9.4.2.3.4. Implementation of logic
	9.4.2.3.5. Job executio

	9.4.3. A job that validates input data
	9.4.3.1. Overview
	9.4.3.1.1. Background
	9.4.3.1.2. Process overview
	9.4.3.1.3. Business specifications
	9.4.3.1.4. Table specifications
	9.4.3.1.5. Job overview

	9.4.3.2. Implementation in Chunk model
	9.4.3.2.1. Defining input check rules
	9.4.3.2.2. Implementation of input check process
	9.4.3.2.3. Job execution

	9.4.3.3. Implementation in Tasklet model
	9.4.3.3.1. Defining input check rules
	9.4.3.3.2. Implementation of input check process
	9.4.3.3.3. Job execution

	9.4.4. A job which performs exception handling by ChunkListener
	9.4.4.1. Overview
	9.4.4.1.1. Background
	9.4.4.1.2. Process overview
	9.4.4.1.3. Business specifications
	9.4.4.1.4. Table specifications
	9.4.4.1.5. Job overview

	9.4.4.2. Implementation in chunk model
	9.4.4.2.1. Adding message definition
	9.4.4.2.2. Implementation of exception handling
	9.4.4.2.3. Job execution and results verification

	9.4.4.3. Implementation in tasklet model
	9.4.4.3.1. Adding message definition
	9.4.4.3.2. Implementation of exception handling
	9.4.4.3.3. Job execution and results verification

	9.4.5. A job which performs exception handling by try-catch
	9.4.5.1. Overview
	9.4.5.1.1. Background
	9.4.5.1.2. Process overview
	9.4.5.1.3. Business specifications
	9.4.5.1.4. Table specifications
	9.4.5.1.5. Job overview

	9.4.5.2. Implementation in chunk model
	9.4.5.2.1. Adding message definition
	9.4.5.2.2. Customising exit codes
	9.4.5.2.3. Implementation of exception handling
	9.4.5.2.4. Job execution and results verification

	9.4.5.3. Implementation in tasklet model
	9.4.5.3.1. Adding message definition
	9.4.5.3.2. Customizing exit codes
	9.4.5.3.3. Implementation of exception handling
	9.4.5.3.4. Job execution and results verification

	9.4.6. Asynchronous execution type job
	9.4.6.1. Overview
	9.4.6.2. Preparation
	9.4.6.2.1. Polling process setting
	9.4.6.2.2. Job configuration
	9.4.6.2.3. Input resource setting

	9.4.6.3. Start asynchronous batch daemon
	9.4.6.4. Register job information in job request table
	9.4.6.5. Job execution results verification
	9.4.6.5.1. Verifying console log
	9.4.6.5.2. Verifying exit codes
	9.4.6.5.3. Verifying output resource

	9.4.6.6. Stopping asynchronous batch daemon
	9.4.6.7. Verifying job execution status

	9.5. Conclusion

	Chapter 10. Summary of points
	10.1. Notes on TERASOLUNA Batch 5.x

